3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers - Nature Nanotechnology

3D spatiotemporally scalable in vivo neural probes based on fluorinated elastomers – Nature Nanotechnology

Source Node: 3036086
  • Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).

    Article  CAS  Google Scholar 

  • Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270 (2020).

    Article  CAS  Google Scholar 

  • Perlmutter, J. S. & Mink, J. W. Deep brain stimulation. Annu. Rev. Neurosci. 29, 229–257 (2006).

    Article  CAS  Google Scholar 

  • Patel, S. R. & Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol. 37, 1007–1012 (2019).

    Article  CAS  Google Scholar 

  • Adolphs, R. The unsolved problems of neuroscience. Trends Cogn. Sci. 19, 173–175 (2015).

    Article  Google Scholar 

  • Musk, E. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Article  Google Scholar 

  • Lacour, S. P., Courtine, G. & Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 1, 16063 (2016).

    Article  CAS  Google Scholar 

  • Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article  CAS  Google Scholar 

  • Tooker, A. et al. Optimization of multi-layer metal neural probe design. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 5995–5998 (2012).

    Google Scholar 

  • Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. Eng. 1, 862–877 (2017).

    Article  CAS  Google Scholar 

  • Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    Article  CAS  Google Scholar 

  • Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    Article  CAS  Google Scholar 

  • Chung, J. E. et al. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101, 21–31 (2019).

    Article  CAS  Google Scholar 

  • Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  CAS  Google Scholar 

  • Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    Article  CAS  Google Scholar 

  • Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1292 (2015).

    Article  CAS  Google Scholar 

  • Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3, e1601966 (2017).

    Article  Google Scholar 

  • Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).

    Article  CAS  Google Scholar 

  • Dalvi, V. H. & Rossky, P. J. Molecular origins of fluorocarbon hydrophobicity. Proc. Natl Acad. Sci. USA 107, 13603–13607 (2010).

    Article  CAS  Google Scholar 

  • Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable ‘liquid Teflon’ for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).

    Article  CAS  Google Scholar 

  • Liao, S., He, Y., Chu, Y., Liao, H. & Wang, Y. Solvent-resistant and fully recyclable perfluoropolyether-based elastomer for microfluidic chip fabrication. J. Mater. Chem. A 7, 16249–16256 (2019).

    Article  CAS  Google Scholar 

  • Liu, J. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).

    Article  CAS  Google Scholar 

  • Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Article  CAS  Google Scholar 

  • Qiang, Y. et al. Crosstalk in polymer microelectrode arrays. Nano Res. 14, 3240–3247 (2021).

    Article  CAS  Google Scholar 

  • Fang, H. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl Acad. Sci. USA 113, 11682–11687 (2016).

    Article  CAS  Google Scholar 

  • Grancarić, A. M. et al. Conductive polymers for smart textile applications. J. Ind. Text. 48, 612–642 (2018).

    Article  Google Scholar 

  • Shoa, T., Mirfakhrai, T. & Madden, J. D. Electro-stiffening in polypyrrole films: dependence of Young’s modulus on oxidation state, load and frequency. Synth. Met. 160, 1280–1286 (2010).

    Article  CAS  Google Scholar 

  • Kim, Y. H. et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells. Adv. Funct. Mater. 21, 1076–1081 (2011).

    Article  CAS  Google Scholar 

  • Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).

    Article  CAS  Google Scholar 

  • Minisy, I. M., Bober, P., Šeděnková, I. & Stejskal, J. Methyl red dye in the tuning of polypyrrole conductivity. Polymer 207, 122854 (2020).

    Article  CAS  Google Scholar 

  • Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834–840 (2017).

    Article  CAS  Google Scholar 

  • Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  CAS  Google Scholar 

  • Qu, J., Ouyang, L., Kuo, C.-C. & Martin, D. C. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomater. 31, 114–121 (2016).

    Article  CAS  Google Scholar 

  • Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48, 2946–2966 (2019).

    Article  CAS  Google Scholar 

  • Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotechnol. 16, 1019–1029 (2021).

    Article  CAS  Google Scholar 

  • Yuk, H., Lu, B. & Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 48, 1642–1667 (2019).

    Article  CAS  Google Scholar 

  • Le Floch, P. et al. Fundamental limits to the electrochemical impedance stability of dielectric elastomers in bioelectronics. Nano Lett. 20, 224–233 (2020).

    Article  Google Scholar 

  • Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    Article  CAS  Google Scholar 

  • Le Floch, P., Meixuanzi, S., Tang, J., Liu, J. & Suo, Z. Stretchable seal. ACS Appl. Mater. Interfaces 10, 27333–27343 (2018).

    Article  Google Scholar 

  • Le Floch, P. et al. Wearable and washable conductors for active textiles. ACS Appl. Mater. Interfaces 9, 25542–25552 (2017).

    Article  Google Scholar 

  • Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).

  • Olson, K. R. et al. Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery applications. Polymer 100, 126–133 (2016).

    Article  CAS  Google Scholar 

  • Timachova, K. et al. Mechanism of ion transport in perfluoropolyether electrolytes with a lithium salt. Soft Matter 13, 5389–5396 (2017).

    Article  CAS  Google Scholar 

  • Barrer, R. Permeability of organic polymers. J. Chem. Soc. Faraday Trans. 35, 644–648 (1940).

    Article  Google Scholar 

  • Van Amerongen, G. Influence of structure of elastomers on their permeability to gases. J. Polym. Sci. 5, 307–332 (1950).

    Article  Google Scholar 

  • Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39, 1–42 (2014).

    Article  CAS  Google Scholar 

  • George, S. C., Knörgen, M. & Thomas, S. Effect of nature and extent of crosslinking on swelling and mechanical behavior of styrene–butadiene rubber membranes. J. Membr. Sci. 163, 1–17 (1999).

  • Vitale, A. et al. Direct photolithography of perfluoropolyethers for solvent-resistant microfluidics. Langmuir 29, 15711–15718 (2013).

    Article  CAS  Google Scholar 

  • Gent, A. N. Fracture mechanics of adhesive bonds. Rubber Chem. Technol. 47, 202–212 (1974).

    Article  CAS  Google Scholar 

  • Wang, Y., Yin, T. & Suo, Z. Polyacrylamide hydrogels. III. Lap shear and peel. J. Mech. Phys. Solids 150, 104348 (2021).

    Article  CAS  Google Scholar 

  • Lacour, S. P., Jones, J., Wagner, S., Teng, L. & Zhigang, S. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459–1467 (2005).

    Article  CAS  Google Scholar 

  • Li, T., Huang, Z., Suo, Z., Lacour, S. P. & Wagner, S. Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 85, 3435–3437 (2004).

    Article  CAS  Google Scholar 

  • Li, T., Suo, Z., Lacour, S. P. & Wagner, S. Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274–3277 (2005).

    Article  CAS  Google Scholar 

  • Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Article  CAS  Google Scholar 

  • Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    Article  CAS  Google Scholar 

  • Vachicouras, N. et al. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Sci. Transl. Med. 11, eaax9487 (2019).

    Article  Google Scholar 

  • Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article  CAS  Google Scholar 

  • Guan, S. et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Sci. Adv. 5, eaav2842 (2019).

    Article  CAS  Google Scholar 

  • Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679–686 (2020).

    Article  CAS  Google Scholar 

  • Lu, Chi et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Sci. Adv. 3, e1600955 (2017).

    Article  Google Scholar 

  • Li, L. et al. Integrated flexible chalcogenide glass photonic devices. Nat. Photon. 8, 643–649 (2014).

  • Li, S., Su, Y. & Li, R. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics. Proc. R. Soc. A 472, 20160087 (2016).

    Article  Google Scholar 

  • Kim, M.-G., Brown, D. K. & Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020).

    Article  CAS  Google Scholar 

  • Morin, F., Chabanas, M., Courtecuisse, H. & Payan, Y. in Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling (eds Payan, Y. & Ohayon, J.) 127–146 (Elsevier, 2017).

  • Stalder, A. F., Kulik, G., Sage, D., Barbieri, L. & Hoffmann, P. A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surf. A 286, 92–103 (2006).

  • Zhao, S. et al. Graphene encapsulated copper microwires as highly MRI compatible neural electrodes. Nano Lett. 16, 7731–7738 (2016).

    Article  CAS  Google Scholar 

  • Schrödinger Release 2021-2: Maestro (Schrödinger Inc., 2021).

  • Harder, E. et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Theory Comput. 12, 281–296 (2016).

    Article  CAS  Google Scholar 

  • Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC '06: Proc. 2006 ACM/IEEE Conference on Supercomputing 43 (IEEE, 2006).

  • Time Stamp:

    More from Nature Nanotechnology