Synthetic biology for plant genetic engineering and molecular farming

Synthetic biology for plant genetic engineering and molecular farming

Source Node: 2558782
    • Calixto J.B.

    The role of natural products in modern drug discovery.

    An. Acad. Bras. Cienc. 2019; 91e20190105

    • Terrer C.
    • et al.

    A trade-off between plant and soil carbon storage under elevated CO2.

    Nature. 2021; 591: 599-603

    • Tyczewska A.
    • et al.

    Towards food security: current state and future prospects of agrobiotechnology.

    Trends Biotechnol. 2018; 36: 1219-1229

    • McCarty N.S.
    • Ledesma-Amaro R.

    Synthetic biology tools to engineer microbial communities for biotechnology.

    Trends Biotechnol. 2019; 37: 181-197

    • Chen Y.
    • et al.

    Systems and synthetic biology tools for advanced bioproduction hosts.

    Curr. Opin. Biotechnol. 2020; 64: 101-109

    • Santorelli M.
    • et al.

    Synthetic development: building mammalian multicellular structures with artificial genetic programs.

    Curr. Opin. Biotechnol. 2019; 59: 130-140

    • Wu M.R.
    • et al.

    Engineering advanced cancer therapies with synthetic biology.

    Nat. Rev. Cancer. 2019; 19: 187-195

    • Brophy J.A.N.
    • Voigt C.A.

    Principles of genetic circuit design.

    Nat. Methods. 2014; 11: 508-520

    • Gupta D.
    • et al.

    Synthetic biology in plants, a boon for coming decades.

    Mol. Biotechnol. 2021; 63: 1138-1154

    • Sirirungruang S.
    • et al.

    Plant-based engineering for production of high-valued natural products.

    Nat. Prod. Rep. 2022; 39: 1492-1509

    • Kent R.
    • Dixon N.

    Contemporary tools for regulating gene expression in bacteria.

    Trends Biotechnol. 2020; 38: 316-333

    • Andres J.
    • et al.

    Synthetic switches and regulatory circuits in plants.

    Plant Physiol. 2019; 179: 862-884

    • Zhong V.
    • et al.

    Transcriptional and post-transcriptional controls for tuning gene expression in plants.

    Curr. Opin. Plant Biol. 2023; 71102315

    • Mett V.L.
    • et al.

    Copper-controllable gene expression system for whole plants.

    Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 4567-4571

    • Saijo T.
    • Nagasawa A.

    Development of a tightly regulated and highly responsive copper-inducible gene expression system and its application to control of flowering time.

    Plant Cell Rep. 2014; 33: 47-59

    • Garcia-Perez E.
    • et al.

    A copper switch for inducing CRISPR/Cas9-based transcriptional activation tightly regulates gene expression in Nicotiana benthamiana.

    BMC Biotechnol. 2022; 22: 1-13

    • Iacopino S.
    • et al.

    A synthetic oxygen sensor for plants based on animal hypoxia signaling.

    Plant Physiol. 2019; 179: 986-1000

    • Zhu H.
    • et al.

    Applications of CRISPR–Cas in agriculture and plant biotechnology.

    Nat. Rev. Mol. Cell Biol. 2020; 21: 661-677

    • Kar S.
    • et al.

    Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors.

    Plant Methods. 2022; 18: 42

    • Misra S.
    • Ganesan M.

    The impact of inducible promoters in transgenic plant production and crop improvement.

    Plant Gene. 2021; 27: 100300

    • Huang D.
    • et al.

    Synthetic biology approaches in regulation of targeted gene expression.

    Curr. Opin. Plant Biol. 2021; 63102036

    • Hummel N.F.C.
    • et al.

    The trans-regulatory landscape of gene networks in plants.

    bioRxiv. 2022; (Published online October 24, 2022. https://doi.org/10.1101/2022.10.23.513368)

    • Pham C.
    • et al.

    Advances in engineering and optimization of transcription factor-based biosensors for plug-and-play small molecule detection.

    Curr. Opin. Biotechnol. 2022; 76102753

    • Shikata H.
    • Denninger P.

    Plant optogenetics: applications and perspectives.

    Curr. Opin. Plant Biol. 2022; 68102256

    • Ochoa-Fernandez R.
    • et al.

    Optogenetic control of gene expression in plants in the presence of ambient white light.

    Nat. Methods. 2020; 17: 717-725

    • Zhang J.
    • et al.

    Development of biosensors and their application in metabolic engineering.

    Curr. Opin. Chem. Biol. 2015; 28: 1-8

    • Yokobayashi Y.

    Aptamer-based and aptazyme-based riboswitches in mammalian cells.

    Curr. Opin. Chem. Biol. 2019; 52: 72-78

    • Verhounig A.
    • et al.

    Inducible gene expression from the plastid genome by a synthetic riboswitch.

    Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 6204-6209

    • Emadpour M.
    • et al.

    Boosting riboswitch efficiency by RNA amplification.

    Nucleic Acids Res. 2015; 43e66

    • Agrawal S.
    • et al.

    Riboswitch-mediated inducible expression of an astaxanthin biosynthetic operon in plastids.

    Plant Physiol. 2022; 188: 637-652

    • Shanidze N.
    • et al.

    A theophylline-responsive riboswitch regulates expression of nuclear-encoded genes.

    Plant Physiol. 2020; 182: 123-135

    • Schwab R.
    • et al.

    Highly specific gene silencing by artificial microRNAs in Arabidopsis.

    Plant Cell. 2006; 18: 1121-1133

    • Pandey P.
    • et al.

    Recent advances in plant gene silencing methods.

    Plant Gene Silencing. 2022; 2408: 1-22

    • Mandal K.
    • et al.

    Micro-RNA based gene regulation: a potential way for crop improvements.

    Plant Gene. 2021; 27100312

    • Johnson E.S.
    • et al.

    Cis-trans recognition and subunit-specific degradation of short-lived proteins.

    Nature. 1990; 346: 287-291

    • Faden F.
    • et al.

    Phenotypes on demand via switchable target protein degradation in multicellular organisms.

    Nat. Commun. 2016; 7: 1-15

    • Faden F.
    • et al.

    Modulating protein stability to switch toxic protein function on and off in living cells.

    Plant Physiol. 2019; 179: 929-942

    • Rosellini D.

    Selectable markers and reporter genes: a well furnished toolbox for plant science and genetic engineering.

    CRC Crit. Rev. Plant Sci. 2012; 31: 401-453

    • He Y.
    • et al.

    A reporter for noninvasively monitoring gene expression and plant transformation.

    Hortic. Res. 2020; 7: 152

    • Khakhar A.
    • et al.

    Building customizable auto-luminescent luciferase-based reporters in plants.

    Elife. 2020; 9e52786

    • Gardner T.S.
    • et al.

    Construction of a genetic toggle switch in Escherichia coli.

    Nature. 2000; 403: 339-342

    • Elowitz M.B.
    • Leibler S.

    A synthetic oscillatory network of transcriptional regulators.

    Nature. 2000; 403: 335-338

    • Tamsir A.
    • et al.

    Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’.

    Nature. 2011; 469: 212-215

    • Siuti P.
    • et al.

    Synthetic circuits integrating logic and memory in living cells.

    Nat. Biotechnol. 2013; 31: 448-452

    • Santos-Moreno J.
    • Schaerli Y.

    Using synthetic biology to engineer spatial patterns.

    Adv. Biosyst. 2019; 3e1800280

    • Bernabé-Orts J.M.
    • et al.

    A memory switch for plant synthetic biology based on the phage φc31 integration system.

    Nucleic Acids Res. 2020; 48: 3379-3394

    • Guiziou S.
    • et al.

    An integrase toolbox to record gene-expression during plant development.

    bioRxiv. 2022; (Published online September 17, 2022. https://doi.org/10.1101/2022.09.16.508262)

    • Lloyd J.P.B.
    • et al.

    Synthetic memory circuits for stable cell reprogramming in plants.

    Nat. Biotechnol. 2022; 40: 1862-1872

    • Khan M.A.
    • et al.

    CRISPRi-based circuits for genetic computation in plants.

    bioRxiv. 2022; (Published online July 1, 2022. https://doi.org/10.1101/2022.07.01.498372)

    • Brophy J.A.N.
    • et al.

    Synthetic genetic circuits as a means of reprogramming plant roots.

    Science. 2022; 377: 747-751

    • Meng F.
    • Ellis T.

    The second decade of synthetic biology: 2010–2020.

    Nat. Commun. 2020; 11: 1-4

    • Kassaw T.
    • et al.

    Developing a Genetic Toggle Switch in Arabidopsis.

    American Physical Society, 2022

    • Tigges M.
    • et al.

    A tunable synthetic mammalian oscillator.

    Nature. 2009; 457: 309-312

    • Webster S.M.
    • et al.

    Intracellular gate opening in Shaker K+ channels defined by high-affinity metal bridges.

    Nature. 2004; 428: 864-868

    • Frei T.
    • et al.

    Characterization and mitigation of gene expression burden in mammalian cells.

    Nat. Commun. 2020; 11: 1-11

    • Basu S.
    • et al.

    Spatiotemporal control of gene expression with pulse-generating networks.

    Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 6355-6360

    • Shoval O.
    • et al.

    Fold-change detection and scalar symmetry of sensory input fields.

    Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 15995-16000

    • Jones T.S.
    • et al.

    Genetic circuit design automation with Cello 2.0.

    Nat. Protoc. 2022; 17: 1097-1113

    • Chen Y.
    • et al.

    Genetic circuit design automation for yeast.

    Nat. Microbiol. 2020; 5: 1349-1360

    • Wong B.G.
    • et al.

    Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER.

    Nat. Biotechnol. 2018; 36: 614-623

    • Lindemann S.R.
    • et al.

    Engineering microbial consortia for controllable outputs.

    ISME J. 2016; 10: 2077-2084

    • Karkaria B.D.
    • et al.

    Automated design of synthetic microbial communities.

    Nat. Commun. 2021; 12: 672

    • McCarthy D.M.
    • Medford J.I.

    Quantitative and predictive genetic parts for plant synthetic biology.

    Front. Plant Sci. 2020; 11512526

    • Kelly J.W.
    • et al.

    A general strategy to construct small molecule biosensors in eukaryotes.

    Elife. 2015; 4e10606

    • Cai Y.M.
    • et al.

    Rational design of minimal synthetic promoters for plants.

    Nucleic Acids Res. 2021; 48: 11845-11856

    • Belcher M.S.
    • et al.

    Design of orthogonal regulatory systems for modulating gene expression in plants.

    Nat. Chem. Biol. 2020; 16: 857-865

    • Park J.
    • et al.

    Toolboxes for plant systems biology research.

    Curr. Opin. Biotechnol. 2022; 75102692

    • Patron N.J.

    DNA assembly for plant biology: techniques and tools.

    Curr. Opin. Plant Biol. 2014; 19: 14-19

    • Cai Y.-M.
    • et al.

    Phytobricks: manual and automated assembly of constructs for engineering plants.

    DNA Clon. Assembly. 2020; 2205: 179-199

    • Chamness J.C.
    • et al.

    An extensible vector toolkit and parts library for advanced engineering of plant genomes.

    Plant Genome. 2022; (Published online March 9, 2023. https://doi.org/10.1002/tpg2.20312)e20312

    • Patron N.J.
    • et al.

    Standards for plant synthetic biology: a common syntax for exchange of DNA parts.

    New Phytol. 2015; 208: 13-19

    • Schaumberg K.A.
    • et al.

    Quantitative characterization of genetic parts and circuits for plant synthetic biology.

    Nat. Methods. 2015; 13: 94-100

    • Pfotenhauer A.C.
    • et al.

    Building the plant SynBio toolbox through combinatorial analysis of DNA regulatory elements.

    ACS Synth. Biol. 2022; 11: 2741-2755

    • Frangedakis E.
    • et al.

    Construction of DNA Tools for hyperexpression in Marchantia chloroplasts.

    ACS Synth. Biol. 2021; 10: 1651-1666

    • Gantait S.
    • Mukherjee E.

    Hairy root culture technology: applications, constraints and prospect.

    Appl. Microbiol. Biotechnol. 2021; 105: 35-53

    • Ibrahim A.
    • et al.

    Plant viruses in plant molecular pharming: toward the use of enveloped viruses.

    Front. Plant Sci. 2019; 10: 803

    • Gurdo N.
    • et al.

    Merging automation and fundamental discovery into the design–build–test–learn cycle of nontraditional microbes.

    Trends Biotechnol. 2022; 40: 1148-1159

    • Dlugosz E.M.
    • et al.

    A robotic platform for high-throughput protoplast isolation and transformation.

    J. Vis. Exp. 2016; 115e54300

    • Dudley Q.M.
    • et al.

    Biofoundry-assisted expression and characterization of plant proteins.

    Synth. Biol. 2021; 6: ysab029

    • Squire H.J.
    • et al.

    The emerging role of nanotechnology in plant genetic engineering.

    Nat. Rev. Bioeng. 2023; (Published online February 22, 2023. https://doi.org/10.1038/s44222-023-00037-5): 1-15

    • Tian C.
    • et al.

    Benchmarking intrinsic promoters and terminators for plant synthetic biology research.

    BioDesign Res. 2022; 2022: 9834989

    • Goold H.D.
    • et al.

    Emerging opportunities for synthetic biology in agriculture.

    Genes. 2018; 9: 341

    • Roell M.-S.
    • Zurbriggen M.D.

    The impact of synthetic biology for future agriculture and nutrition.

    Curr. Opin. Biotechnol. 2020; 61: 102-109

    • Liu Y.
    • Nielsen J.

    Recent trends in metabolic engineering of microbial chemical factories.

    Curr. Opin. Biotechnol. 2019; 60: 188-197

    • Xu X.
    • et al.

    Microbial chassis development for natural product biosynthesis.

    Trends Biotechnol. 2020; 38: 779-796

    • Kurup V.M.
    • Thomas J.

    Edible vaccines: promises and challenges.

    Mol. Biotechnol. 2020; 62: 79-90

    • Hiatt A.
    • et al.

    Production of antibodies in transgenic plants.

    Nature. 1989; 342: 76-78

    • Schillberg S.
    • Finnern R.

    Plant molecular farming for the production of valuable proteins – critical evaluation of achievements and future challenges.

    J. Plant Physiol. 2021; 258153359

    • Mirzaee M.
    • et al.

    Recent advances in molecular farming using monocot plants.

    Biotechnol. Adv. 2022; 58107913

    • Yang Y.
    • et al.

    Plant synthetic biology innovations for biofuels and bioproducts.

    Trends Biotechnol. 2022; 40: 1454-1468

    • Barnum C.R.
    • et al.

    Optimization of heterologous glucoraphanin production in planta.

    ACS Synth. Biol. 2022; 1: 1865-1873

    • Dudley Q.M.
    • et al.

    Reconstitution of monoterpene indole alkaloid biosynthesis in genome engineered Nicotiana benthamiana.

    Commun. Biol. 2022; 5: 949

    • Mateos-Fernández R.
    • et al.

    Production of volatile moth sex pheromones in transgenic Nicotiana benthamiana plants.

    BioDesign Res. 2021; 2021: 9891082

    • Kallam K.
    • et al.

    Tunable control of insect pheromone biosynthesis in Nicotiana benthamiana.

    bioRxiv. 2022; (June 15, 2022)

    • Yang Y.
    • et al.

    Applications of multi-omics technologies for crop improvement.

    Front. Plant Sci. 2021; 12: 1846

    • Kumar R.
    • et al.

    Understanding omics driven plant improvement and de novo crop domestication: some examples.

    Front. Genet. 2021; 12: 415

    • Jutras P.V.
    • et al.

    Proteases of Nicotiana benthamiana: an emerging battle for molecular farming.

    Curr. Opin. Biotechnol. 2020; 61: 60-65

    • Yaschenko A.E.
    • et al.

    Deciphering the molecular basis of tissue-specific gene expression in plants: can synthetic biology help?.

    Curr. Opin. Plant Biol. 2022; 68102241

    • Barnum C.R.
    • et al.

    Utilizing plant synthetic biology to improve human health and wellness.

    Front. Plant Sci. 2021; 12691462

    • Friesner J.
    • et al.

    Broadening the impact of plant science through innovative, integrative, and inclusive outreach.

    Plant Direct. 2021; 5e00316

    • Schena M.
    • et al.

    A steroid-inducible gene expression system for plant cells.

    Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 10421-10425

    • Aoyama T.
    • Chua N.H.

    A glucocorticoid-mediated transcriptional induction system in transgenic plants.

    Plant J. 1997; 11: 605-612

    • Moore I.
    • et al.

    A transcription activation system for regulated gene expression in transgenic plants.

    Proc. Natl. Acad. Sci. U. S. A. 1998; 95: 376-381

    • Craft J.
    • et al.

    New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis.

    Plant J. 2005; 41: 899-918

    • Gatz C.
    • et al.

    Stringent repression and homogeneous de-repression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants.

    Plant J. 1992; 2: 397-404

    • Weinmann P.
    • et al.

    A chimeric transactivator allows tetracycline-responsive gene expression in whole plants.

    Plant J. 1994; 5: 559-569

    • Martinez A.
    • et al.

    Ecdysone agonist inducible transcription in transgenic tobacco plants.

    Plant J. 1999; 19: 97-106

    • Caddick M.X.
    • et al.

    An ethanol inducible gene switch for plants used to manipulate carbon metabolism.

    Nat. Biotechnol. 1998; 16: 177-180

    • Zuo J.
    • et al.

    An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants.

    Plant J. 2000; 24: 265-273

    • Frey A.D.
    • et al.

    Novel pristinamycin-responsive expression systems for plant cells.

    Biotechnol. Bioeng. 2001; 74: 154-163

    • Padidam M.
    • et al.

    Chemical-inducible, ecdysone receptor-based gene expression system for plants.

    Transgenic Res. 2003; 12: 101-109

    • You Y.S.
    • et al.

    Use of bacterial quorum-sensing components to regulate gene expression in plants.

    Plant Physiol. 2006; 140: 1205-1212

    • Antunes M.S.
    • et al.

    Programmable ligand detection system in plants through a synthetic signal transduction pathway.

    PLoS One. 2011; 6e16292

    • Müller K.
    • et al.

    A red light-controlled synthetic gene expression switch for plant systems.

    Mol. BioSyst. 2014; 10: 1679-1688

    • Feng J.
    • et al.

    A general strategy to construct small molecule biosensors in eukaryotes.

    Elife. 2015; 4e10606

    • Bick M.J.
    • et al.

    Computational design of environmental sensors for the potent opioid fentanyl.

    Elife. 2017; 6e28909

    • Chatelle C.
    • et al.

    A green-light-responsive system for the control of transgene expression in mammalian and plant cells.

    ACS Synth. Biol. 2018; 7: 1349-1358

  • First plant-made biologic approved.

    Nat. Biotechnol. 2012; 30: 472-473

    • Yao J.
    • et al.

    Plants as factories for human pharmaceuticals: applications and challenges.

    Int. J. Mol. Sci. 2015; 16: 28549-28565

    • Clarke J.L.
    • et al.

    Lettuce-produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination.

    Plant Biotechnol. J. 2017; 15: 1611-1621

    • Chichester J.A.
    • et al.

    Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: a phase 1 dose-escalation study in healthy adults.

    Vaccine. 2018; 36: 5865-5871

    • Lai H.
    • et al.

    A plant-produced vaccine protects mice against lethal West Nile virus infection without enhancing Zika or dengue virus infectivity.

    Vaccine. 2018; 36: 1846-1852

    • Daniell H.
    • et al.

    Cold chain and virus-free oral polio booster vaccine made in lettuce chloroplasts confers protection against all three poliovirus serotypes.

    Plant Biotechnol. J. 2019; 17: 1357-1368

    • Seber Kasinger L.E.
    • et al.

    A novel anti-HIV-1 bispecific bNAb-lectin fusion protein engineered in a plant-based transient expression system.

    Plant Biotechnol. J. 2019; 17: 1646-1656

    • Ma J.K.-C.
    • et al.

    Regulatory approval and a first-in-human phase I clinical trial of a monoclonal antibody produced in transgenic tobacco plants.

    Plant Biotechnol. J. 2015; 13: 1106-1120

    • Ponndorf D.
    • et al.

    Plant-made dengue virus-like particles produced by co-expression of structural and non-structural proteins induce a humoral immune response in mice.

    Plant Biotechnol. J. 2021; 19: 745-756

    • Phan H.T.
    • et al.

    Immunization with plant-derived multimeric H5 hemagglutinins protect chicken against highly pathogenic avian influenza virus H5N1.

    Vaccines. 2020; 8: 593

    • van der Veen S.J.
    • et al.

    Developments in the treatment of Fabry disease.

    J. Inherit. Metab. Dis. 2020; 43: 908-921

    • Mirzaee M.
    • et al.

    Long-lasting stable expression of human LL-37 antimicrobial peptide in transgenic barley plants.

    Antibiotics. 2021; 10: 898

    • Hager K.J.
    • et al.

    Efficacy and safety of a recombinant plant-based adjuvanted covid-19 vaccine.

    N. Engl. J. Med. 2022; 386: 2084-2096

  • Time Stamp:

    More from Biotechnology Trends