Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential

Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential

Source Node: 1898997
    • Safiri S.
    • et al.

    Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017.

    Ann. Rheum. Dis. 2020; 79: 819-828

    • Almutairi K.
    • et al.

    The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review.

    Rheumatol. Int. 2021; 41: 863-877

    • Camacho-Encina M.
    • et al.

    Discovery of an autoantibody signature for the early diagnosis of knee osteoarthritis: data from the Osteoarthritis Initiative.

    Ann. Rheum. Dis. 2019; 78: 1699-1705

    • He Y.
    • et al.

    Pathogenesis of osteoarthritis: risk factors, regulatory pathways in chondrocytes, and experimental models.

    Biology. 2020; 9: 194

    • Di Matteo B.
    • et al.

    Osteoarthritis: an ancient disease, an unsolved conundrum.

    Int. Orthop. 2021; 45: 313-317

    • Makarczyk M.J.
    • et al.

    Current models for development of disease-modifying osteoarthritis drugs.

    Tissue Eng. Part C Methods. 2021; 27: 124-138

    • Li Z.
    • et al.

    Human mesenchymal stem cell-derived miniature joint system for disease modeling and drug testing.

    Adv. Sci. 2022; 9e2105909

    • Nygaard G.
    • Firestein G.S.

    Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes.

    Nat. Rev. Rheumatol. 2020; 16: 316-333

    • Humby F.
    • et al.

    Synovial cellular and molecular signatures stratify clinical response to csDMARD therapy and predict radiographic progression in early rheumatoid arthritis patients.

    Ann. Rheum. Dis. 2019; 78: 761-772

  • Defining refractory rheumatoid arthritis.

    Ann. Rheum. Dis. 2018; 77: 966-969

    • Van den Bosch F.
    • Coates L.

    Clinical management of psoriatic arthritis.

    Lancet. 2018; 391: 2285-2294

    • Masters E.A.
    • et al.

    Skeletal infections: microbial pathogenesis, immunity and clinical management.

    Nat. Rev. Microbiol. 2022; 20: 385-400

    • Sun Y.
    • et al.

    Generating 3D-cultured organoids for pre-clinical modeling and treatment of degenerative joint disease.

    Signal Transduct. Target Ther. 2021; 6: 380

    • Collins K.H.
    • et al.

    Adipose tissue is a critical regulator of osteoarthritis.

    Proc. Natl. Acad. Sci. U. S. A. 2021; 118e2021096118

    • Schott E.M.
    • et al.

    Targeting the gut microbiome to treat the osteoarthritis of obesity.

    JCI Insight. 2018; 3e95997

    • Smeriglio P.
    • et al.

    Inhibition of TET1 prevents the development of osteoarthritis and reveals the 5hmC landscape that orchestrates pathogenesis.

    Sci. Transl. Med. 2020; 12eaax2332

    • Doyran B.
    • et al.

    Nanoindentation modulus of murine cartilage: a sensitive indicator of the initiation and progression of post-traumatic osteoarthritis.

    Osteoarthr. Cartil. 2017; 25: 108-117

    • Liao L.
    • et al.

    Acute synovitis after trauma precedes and is associated with osteoarthritis onset and progression.

    Int. J. Biol. Sci. 2020; 16: 970-980

    • He H.
    • et al.

    Survey of clinical translation of cancer nanomedicines—lessons learned from successes and failures.

    Acc. Chem. Res. 2019; 52: 2445-2461

    • Guan Y.
    • et al.

    Machine learning to predict anti-tumor necrosis factor drug responses of rheumatoid arthritis patients by integrating clinical and genetic markers.

    Arthritis Rheum. 2019; 71: 1987-1996

    • Grandi F.C.
    • et al.

    Single-cell mass cytometry reveals cross-talk between inflammation-dampening and inflammation-amplifying cells in osteoarthritic cartilage.

    Sci. Adv. 2020; 6eaay5352

    • Wang N.
    • et al.

    Engineering osteoarthritic cartilage model through differentiating senescent human mesenchymal stem cells for testing disease-modifying drugs.

    Sci. China Life Sci. 2022; 65: 309-327

    • Jalili-Firoozinezhad S.
    • et al.

    Modeling the human body on microfluidic chips.

    Trends Biotechnol. 2021; 39: 838-852

    • Liu C.
    • et al.

    Modeling human diseases with induced pluripotent stem cells: from 2D to 3D and beyond.

    Development. 2018; 145dev156166

    • Vunjak-Novakovic G.
    • et al.

    Organs-on-a-chip models for biological research.

    Cell. 2021; 184: 4597-4611

    • Novak R.
    • et al.

    Robotic fluidic coupling and interrogation of multiple vascularized organ chips.

    Nat. Biomed. Eng. 2020; 4: 407-420

    • Mondadori C.
    • et al.

    Recapitulating monocyte extravasation to the synovium in an organotypic microfluidic model of the articular joint.

    Biofabrication. 2021; 13045001

    • Occhetta P.
    • et al.

    Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model.

    Nat. Biomed. Eng. 2019; 3: 545-557

    • Rothbauer M.
    • et al.

    Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research.

    Lab Chip. 2021; 21: 4128-4143

    • Rosser J.
    • et al.

    Microfluidic nutrient gradient-based three-dimensional chondrocyte culture-on-a-chip as an in vitro equine arthritis model.

    Mater. Today Bio. 2019; 4100023

    • Artacho A.
    • et al.

    The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis.

    Arthritis Rheum. 2021; 73: 931-942

    • Campbell S.B.
    • et al.

    Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems.

    ACS Biomater. Sci. Eng. 2021; 7: 2880-2899

    • Matai I.
    • et al.

    Progress in 3D bioprinting technology for tissue/organ regenerative engineering.

    Biomaterials. 2020; 226119536

    • Weisgrab G.
    • et al.

    Functional 3D printing for microfluidic chips.

    Adv. Mater. Technol. 2019; 41900275

    • Novak R.
    • et al.

    Scalable fabrication of stretchable, dual channel, microfluidic organ chips.

    J. Vis. Exp. 2018; 140e58151

    • Rothbauer M.
    • et al.

    Monitoring tissue-level remodelling during inflammatory arthritis using a three-dimensional synovium-on-a-chip with non-invasive light scattering biosensing.

    Lab Chip. 2020; 20: 1461-1471

    • Homan K.A.
    • et al.

    Bioprinting of 3D convoluted renal proximal tubules on perfusable chips.

    Sci. Rep. 2016; 6: 34845

    • Lin H.
    • et al.

    Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β.

    Mol. Pharm. 2014; 11: 2203-2212

    • Lin Z.
    • et al.

    Osteochondral tissue chip derived from iPSCs: modeling OA pathologies and testing drugs.

    Front. Bioeng. Biotechnol. 2019; 7: 411

    • Lee J.
    • et al.

    Combinatorial screening of biochemical and physical signals for phenotypic regulation of stem cell-based cartilage tissue engineering.

    Sci. Adv. 2020; 6eaaz5913

    • Park D.
    • et al.

    Integrating organs-on-chips: multiplexing, scaling, vascularization, and innervation.

    Trends Biotechnol. 2020; 38: 99-112

    • Collison J.

    Cartilage-on-a-chip to aid OA drug development.

    Nat. Rev. Rheumatol. 2019; 15: 511

    • Lee D.
    • et al.

    Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology.

    Lab Chip. 2018; 18: 2077-2086

    • Capuana E.
    • et al.

    A high-throughput mechanical activator for cartilage engineering enables rapid screening of in vitro response of tissue models to physiological and supra-physiological loads.

    Cells Tissues Organs. 2021; 211: 54-72

    • Yang F.
    • et al.

    A 3D human adipose tissue model within a microfluidic device.

    Lab Chip. 2021; 21: 435-446

    • Vainieri M.L.
    • et al.

    Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.

    Acta Biomater. 2018; 81: 256-266

    • López-Jiménez C.
    • et al.

    TRPV4 activation enhances compressive properties and glycosaminoglycan deposition of equine neocartilage sheets.

    Osteoarthr. Cartil. Open. 2022; 4100263

    • Lee W.
    • et al.

    Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage.

    Proc. Natl. Acad. Sci. U.S.A. 2014; 111: E5114-E5122

    • Lee W.
    • et al.

    Inflammatory signaling sensitizes Piezo1 mechanotransduction in articular chondrocytes as a pathogenic feed-forward mechanism in osteoarthritis.

    Proc. Natl. Acad. Sci. U.S.A. 2021; 118e2001611118

    • Romero-López M.
    • et al.

    Macrophage effects on mesenchymal stem cell osteogenesis in a three-dimensional in vitro bone model.

    Tissue Eng. Part A. 2020; 26: 1099-1111

    • O’Donnell B.T.
    • et al.

    Adipose tissue-derived stem cells retain their adipocyte differentiation potential in three-dimensional hydrogels and bioreactors.

    Biomolecules. 2020; 10: 1070

    • Gao Q.
    • et al.

    Macrophages modulate the function of MSC- and iPSC-derived fibroblasts in the presence of polyethylene particles.

    Int. J. Mol. Sci. 2021; 22: 12837

    • Oliveira I.M.
    • et al.

    Modulation of inflammation by anti-TNF α mAb-dendrimer nanoparticles loaded in tyramine-modified gellan gum hydrogels in a cartilage-on-a-chip model.

    J. Mater. Chem. B. 2021; 9: 4211-4218

    • Gao Q.
    • et al.

    The effects of macrophage phenotype on osteogenic differentiation of MSCs in the presence of polyethylene particles.

    Biomedicines. 2021; 9: 499

    • Ma H.-P.
    • et al.

    A microfluidic chip-based co-culture of fibroblast-like synoviocytes with osteoblasts and osteoclasts to test bone erosion and drug evaluation.

    R. Soc. Open Sci. 2018; 5180528

    • Ratneswaran A.
    • Kapoor M.

    Osteoarthritis year in review: genetics, genomics, epigenetics.

    Osteoarthr. Cartil. 2021; 29: 151-160

    • Lilianty J.
    • et al.

    Generation of a heterozygous COL2A1 (p.G1113C) hypochondrogenesis mutation iPSC line, MCRIi019-A-7, using CRISPR/Cas9 gene editing.

    Stem Cell Res. 2021; 56102515

    • Tuerlings M.
    • et al.

    Capturing essential physiological aspects of interacting cartilage and bone tissue with osteoarthritis pathophysiology: a human osteochondral unit-on-a-chip model.

    Adv. Mater. Technol. 2022; ()

    • Tuerlings M.
    • et al.

    Development of a human osteochondral construct on a microfluidic chip–to advance functional studies of osteoarthritis risk genes.

    Osteoarthr. Cartil. 2021; 29: S108-S109

    • Marrero D.
    • et al.

    Gut-on-a-chip: mimicking and monitoring the human intestine.

    Biosens. Bioelectron. 2021; 181113156

    • Sebastian A.
    • et al.

    Single-cell RNA-seq reveals transcriptomic heterogeneity and post-traumatic osteoarthritis-associated early molecular changes in mouse articular chondrocytes.

    Cells. 2021; 10: 1462

    • Kuzmanov U.
    • et al.

    Mapping signalling perturbations in myocardial fibrosis via the integrative phosphoproteomic profiling of tissue from diverse sources.

    Nat. Biomed. Eng. 2020; 4: 889-900

    • Tang R.
    • et al.

    Gene therapy for follistatin mitigates systemic metabolic inflammation and post-traumatic arthritis in high-fat diet-induced obesity.

    Sci. Adv. 2020; 6eaaz7492

    • Carlson A.K.
    • et al.

    Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis.

    Osteoarthr. Cartil. 2019; 27: 1174-1184

    • Ng L.
    • et al.

    Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy.

    J. Struct. Biol. 2003; 143: 242-257

    • Fan Y.
    • et al.

    Exosomes in the pathogenesis, progression, and treatment of osteoarthritis.

    Bioengineering. 2022; 9: 99

    • Van Den Berg A.
    • et al.

    Personalised organs-on-chips: functional testing for precision medicine.

    Lab Chip. 2019; 19: 198-205

    • Hu W.
    • et al.

    Microenvironment in subchondral bone: predominant regulator for the treatment of osteoarthritis.

    Ann. Rheum. Dis. 2021; 80: 413-422

    • Jusoh N.
    • et al.

    Microfluidic vascularized bone tissue model with hydroxyapatite-incorporated extracellular matrix.

    Lab Chip. 2015; 15: 3984-3988

    • Pirosa A.
    • et al.

    An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex.

    Biomaterials. 2021; 272120773

    • Marturano-Kruik A.
    • et al.

    Human bone perivascular niche-on-a-chip for studying metastatic colonization.

    Proc. Natl. Acad. Sci. U.S.A. 2018; 115: 1256-1261

    • Li C.
    • et al.

    Buoyancy-driven gradients for biomaterial fabrication and tissue engineering.

    Adv. Mater. 2019; 311900291

    • Sant S.
    • et al.

    Biomimetic gradient hydrogels for tissue engineering.

    Can. J. Chem. Eng. 2010; 88: 899-911

    • Robinson W.H.
    • et al.

    Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis.

    Nat. Rev. Rheumatol. 2016; 12: 580-592

    • Loskill P.
    • et al.

    WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue.

    Lab Chip. 2017; 17: 1645-1654

    • Tanataweethum N.
    • et al.

    Establishment and characterization of a primary murine adipose tissue-chip.

    Biotechnol. Bioeng. 2018; 115: 1979-1987

    • Lin H.
    • et al.

    Bone marrow mesenchymal stem cells: aging and tissue engineering applications to enhance bone healing.

    Biomaterials. 2019; 203: 96-110

    • Li Z.
    • et al.

    Graphene oxide-functionalized nanocomposites promote osteogenesis of human mesenchymal stem cells via enhancement of BMP-SMAD1/5 signaling pathway.

    Biomaterials. 2021; 277121082

    • Yamanaka S.

    Induced pluripotent stem cells: past, present, and future.

    Cell Stem Cell. 2012; 10: 678-684

    • Bachmann B.
    • et al.

    Stiffness matters: fine-tuned hydrogel elasticity alters chondrogenic redifferentiation.

    Front. Bioeng. Biotechnol. 2020; 8: 373

    • Varone A.
    • et al.

    A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it.

    Biomaterials. 2021; 275120957

    • Qian X.
    • et al.

    Brain organoids: advances, applications and challenges.

    Development. 2019; 146dev166074

    • Miller A.J.
    • et al.

    Generation of lung organoids from human pluripotent stem cells in vitro.

    Nat. Protoc. 2019; 14: 518-540

    • Phipson B.
    • et al.

    Evaluation of variability in human kidney organoids.

    Nat. Methods. 2019; 16: 79-87

    • Broutier L.
    • et al.

    Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    Nat. Protoc. 2016; 11: 1724-1743

    • Puschhof J.
    • et al.

    Intestinal organoid cocultures with microbes.

    Nat. Protoc. 2021; 16: 4633-4649

    • Strobel H.A.
    • et al.

    Vascularized adipocyte organoid model using isolated human microvessel fragments.

    Biofabrication. 2021; 13035022

    • Chen S.
    • et al.

    The horizon of bone organoid: A perspective on construction and application.

    Bioact. Mater. 2022; 18: 15-25

    • Liu Y.
    • et al.

    Robust bone regeneration through endochondral ossification of human mesenchymal stem cells within their own extracellular matrix.

    Biomaterials. 2019; 218119336

    • Nilsson Hall G.
    • et al.

    Developmentally engineered callus organoid bioassemblies exhibit predictive in vivo long bone healing.

    Adv. Sci. 2020; 71902295

    • Hall G.N.
    • et al.

    Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo.

    Biomaterials. 2021; 273120820

    • O’Connor S.K.
    • et al.

    Formation of osteochondral organoids from murine induced pluripotent stem cells.

    Tissue Eng. Part A. 2021; 27: 1099-1109

    • Klingelhutz A.J.
    • et al.

    Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery.

    Sci. Rep. 2018; 8: 523

    • Takebe T.
    • et al.

    Synergistic engineering: organoids meet organs-on-a-chip.

    Cell Stem Cell. 2017; 21: 297-300

    • Lee H.
    • Cho D.-W.

    One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.

    Lab Chip. 2016; 16: 2618-2625

    • Hu Y.
    • et al.

    Botanical-inspired 4D printing of hydrogel at the microscale.

    Adv. Funct. Mater. 2020; 301907377

  • Time Stamp:

    More from Biotechnology Trends