Scientists reveal the effect of Cu(I) structure on quantum sieving for hydrogen isotope separation

Scientists reveal the effect of Cu(I) structure on quantum sieving for hydrogen isotope separation

Source Node: 1957842

Home > Press > Scientists reveal the effect of Cu(I) structure on quantum sieving for hydrogen isotope separation

The separation mechanism of D2/H2 mixture in Cu(I)Cu(II)-BTC. CREDIT
HU Xiaoyu
The separation mechanism of D2/H2 mixture in Cu(I)Cu(II)-BTC. CREDIT HU Xiaoyu

Abstract:
Recently, a research team led by Prof. CHEN Changlun from Institute of Plasma Physics, Hefei Institutes of Physical Science of Chinese Academy of Sciences, studied Cu(I)Cu(II)-BTC, a kind of hydrogen isotope separation material and proved its crucial role in tuning quantum sieving without a complex structural design, which provided a new strategy for the intelligent design of highly efficient isotope systems.

Scientists reveal the effect of Cu(I) structure on quantum sieving for hydrogen isotope separation

Hefei, China | Posted on February 10th, 2023

The result was published in ACS Applied Materials & Interfaces.

High pure deuterium (D2) is an important industrial and scientific gas, which has been widely used as an irreplaceable raw material, neutron moderator, isotopic tracer, and in other fields. Despite the huge demand for it, the mole fraction of natural deuterium is only up to 0.0156% of natural hydrogen in the oceans. Moreover, D2 and its isotope (H2 or T2) molecules have almost identical classical dimensions, associated with very similar physicochemical properties, and the separation of hydrogen isotope mixtures in high purity has been considered as one of the greatest difficulties and challenges in modern separation technology.

In this study, HKUST-1 crystals in the presence of hydroquinone were reduced to construct Cu(I)Cu(II)-BTC, featured by dual micropore size distribution and mixed-valence of Cu metal, and had been chosen to study H2/D2 separation in detail.

The study showed that unique Cu(I) and Cu(II) coordination network of Cu(I)Cu(II)-BTC could significantly facilitate D2/H2 isotope separation. Density functional theory (DFT) calculations indicated that the introduction of Cu(I) macrocycles in the framework decreased the pore size and further led to relatively enhanced interaction of H2/D2 molecules on Cu(II) sites. The significantly enhanced selectivity of Cu(I)Cu(II)-BTC at 30 K was mainly attributed to the synergistic effect of kinetic quantum sieving (KQS) and chemical affinity quantum sieving (CAQS).

In addition, a large angle of 156° for the O-Cu(I)-O configuration in Cu(I)Cu(II)-BTC exhibited weak binding strength of hydrogen adsorption since the dz2 orbital and small positive of Cu(I) couldn't effectively participate in the hydrogen interaction, and didn't show a strong CAQS effect at above liquid nitrogen temperature.

This research verified the effect of Cu(I) structure in D2/H2 separation. "We believe that this study will provide a new strategy for reasonable design of porous materials with OMSs at highly efficient isotope and gas separation systems," said HU Xiaoyu, first author of the paper.

####

For more information, please click here

Contacts:
Weiwei Zhao
Hefei Institutes of Physical Science, Chinese Academy of Sciences
Office: 86-551-655-91206

Copyright © Hefei Institutes of Physical Science, Chinese Academy of Sciences

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Graphene Flagship start-up Bedimensional closes a second €10 million investment round February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Physics

A new experiment pushes the boundaries of our understanding of topological quantum matter: The behavior of bosonic particles observed in a magnetic insulator fabricated from ruthenium chloride can be explained by a relatively new and little-studied physics phenomenon called the B November 18th, 2022

Novel nanowire fabrication technique paves way for next generation spintronics November 4th, 2022

Milestones achieved on the path to useful quantum technologies: Researchers at Paderborn and Ulm universities are developing the first programmable optical quantum memory October 7th, 2022

Layer Hall effect and hidden Berry curvature in antiferromagnetic insulators September 30th, 2022

Possible Futures

Scientists boost quantum signals while reducing noise: “Squeezing” noise over a broad frequency bandwidth in a quantum system could lead to faster and more accurate quantum measurements February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Discoveries

Scientists boost quantum signals while reducing noise: “Squeezing” noise over a broad frequency bandwidth in a quantum system could lead to faster and more accurate quantum measurements February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Announcements

Graphene Flagship start-up Bedimensional closes a second €10 million investment round February 10th, 2023

Fiber sensing scientists invent 3D printed fiber microprobe for measuring in vivo biomechanical properties of tissue and even single cell February 10th, 2023

Photonic Materials: Recent Advances and Emerging Applications February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists boost quantum signals while reducing noise: “Squeezing” noise over a broad frequency bandwidth in a quantum system could lead to faster and more accurate quantum measurements February 10th, 2023

Progress toward fast-charging lithium-metal batteries: By growing uniform lithium crystals on a surprising surface, UC San Diego engineers open a new door to fast-charging lithium-metal batteries February 10th, 2023

Beyond lithium: a promising cathode material for magnesium rechargeable batteries: Scientists discover the optimal composition for a magnesium secondary battery cathode to achieve better cyclability and high battery capacity February 10th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Time Stamp:

More from Nanotechnology Now Recent News