A keringő mieloid sejtek általi szállítás elősegíti a liposzómák felhalmozódását a gyulladt ízületben - Nature Nanotechnology

A keringő mieloid sejtek általi szállítás elősegíti a liposzómák felhalmozódását a gyulladt ízületben – Nature Nanotechnology

Forrás csomópont: 2763977
  • Sercombe, L. et al. A liposzómákkal segített gyógyszerbejuttatás előrehaladása és kihívásai. Elülső. Pharmacol. 6, 286 (2015).

    Cikk  Google Scholar 

  • Giulimondi, F. et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 10, 3686 (2019).

    Cikk  CAS  Google Scholar 

  • Suk, JS, Xu, Q., Kim, N., Hanes, J. & Ensign, LM PEGiláció mint stratégia a nanorészecskéken alapuló gyógyszer- és génszállítás javítására. Adv. Gyógyszer szállítás. Fordulat. 99, 28 – 51 (2016).

    Cikk  CAS  Google Scholar 

  • Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265 – 14270 (2008).

  • Ren, H. et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl. Mater. Interfészek 11, 20304 – 20315 (2019).

    Cikk  CAS  Google Scholar 

  • Yang, M., Feng, X., Ding, J., Chang, F. & Chen, X. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Kiadás 252, 108 – 124 (2017).

    Cikk  CAS  Google Scholar 

  • Gawne, P. J. et al. PET imaging of liposomal glucocorticoids using 89 Zr-oxine: theranostic applications in inflammatory arthritis. Theranosztika 10, 3867 – 3879 (2020).

    Cikk  CAS  Google Scholar 

  • Metselaar, J. M. et al. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Nyálka. Köd. 63, 348 – 353 (2004).

    Cikk  CAS  Google Scholar 

  • Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387 – 6392 (1986).

    CAS  Google Scholar 

  • Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Kiadás 244, 108 – 121 (2016).

    Cikk  CAS  Google Scholar 

  • Davignon, J. L. et al. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Reumatológia 52, 590 – 598 (2013).

    Cikk  CAS  Google Scholar 

  • Kaplan, M. J. Role of neutrophils in systemic autoimmune diseases. Arthritis Res. Ott. 15, 219 (2013).

    Cikk  Google Scholar 

  • Izar, M. C. O. et al. Monocyte subtypes and the CCR2 chemokine. Clin. Sci. (Lond.) 131, 1215 – 1224 (2017).

  • McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Gerely 389, 2328 – 2337 (2017).

    Cikk  CAS  Google Scholar 

  • Dammes, N. et al. Lipid nanorészecskék konformációérzékeny célzása RNS terápiákhoz. Nat. Nanotechnol. 16, 1030 – 1038 (2021).

    Cikk  CAS  Google Scholar 

  • Sofias, A. M., Andreassen, T. & Hak, S. Nanoparticle ligand-decoration procedures affect in vivo interactions with immune cells. Mol. Pharm. 15, 5754 – 5761 (2018).

    Cikk  CAS  Google Scholar 

  • Chu, D., Gao, J. & Wang, Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 9, 11800 – 11811 (2015).

    Cikk  CAS  Google Scholar 

  • Karathanasis, E. et al. Selective targeting of nanocarriers to neutrophils and monocytes. Ann. Biomed. Eng. 37, 1984 – 1992 (2009).

    Cikk  Google Scholar 

  • Veiga, N. et al. Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target. J. Control. Kiadás 313, 33 – 41 (2019).

    Cikk  CAS  Google Scholar 

  • Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951 – 967 (2021).

  • El Kebir, D. E. & Filep, J. G. Modulation of neutrophil apoptosis and the resolution of inflammation through β2 integrins. Elülső. Immunol. 4, 60 (2013).

    Cikk  Google Scholar 

  • Braeckmans, K. et al. Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett. 10, 4435 – 4442 (2010).

  • Chen, D., Ganesh, S., Wang, W. & Amiji, M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicina 12, 2113 – 2135 (2017).

    Cikk  CAS  Google Scholar 

  • De Chermont, Q. L. M. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266 – 9271 (2007).

    Cikk  Google Scholar 

  • Smith, W. J. et al. Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes. Biomaterials 161, 57 (2018).

    Cikk  CAS  Google Scholar 

  • Hofkens, W., Storm, G., Van Den Berg, W. B. & Van Lent, P. L. Liposomal targeting of glucocorticoids to the inflamed synovium inhibits cartilage matrix destruction during murine antigen-induced arthritis. Int. J. Pharm. 416, 486 – 492 (2011).

    Cikk  CAS  Google Scholar 

  • Kratofil, R. M., Kubes, P. & Deniset, J. F. Monocyte conversion during inflammation and injury. Arterioszkler. Thromb. Vasc. Biol. 37, 35 – 42 (2017).

    Cikk  CAS  Google Scholar 

  • Gschwandtner, M., Derler, R. & Midwood, K. S. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Elülső. Immunol. 10, 2759 (2019).

    Cikk  CAS  Google Scholar 

  • Seeuws, S. et al. A multiparameter approach to monitor disease activity in collagen-induced arthritis. Arthritis Res. Ott. 12, R160 (2010).

    Cikk  Google Scholar 

  • Tu, J. et al. Ontogeny of synovial macrophages and the roles of synovial macrophages from different origins in arthritis. Elülső. Immunol. 10, 1146 (2019).

    Cikk  CAS  Google Scholar 

  • Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med. 209, 1167 – 1181 (2012).

    Cikk  CAS  Google Scholar 

  • Inglis, J. J. et al. Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis Res. Ott. 9, R113 (2007).

    Cikk  Google Scholar 

  • Asquith, D. L., Miller, A. M., McInnes, I. B. & Liew, F. Y. Animal models of rheumatoid arthritis. Eur. J. Immunol. 39, 2040 – 2044 (2009).

    Cikk  CAS  Google Scholar 

  • Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol. 167, 1601 – 1608 (2001).

    Cikk  CAS  Google Scholar 

  • Akinc, A. et al. Az Onpattro-történet és a nukleinsav-alapú gyógyszereket tartalmazó nanomedicinák klinikai fordítása. Nat. Nanotechnol. 14, 1084 – 1087 (2019).

  • Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & Van Der Meel, R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Felhalmozódás Chem. Res. 52, 2435 – 2444 (2019).

    Cikk  CAS  Google Scholar 

  • Zhu, X. et al. Surface de-PEGylation controls nanoparticle-mediated siRNA delivery in vitro and in vivo. Theranosztika 7, 1990 – 2002 (2017).

    Cikk  CAS  Google Scholar 

  • Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    Cikk  Google Scholar 

  • Meghraoui-Kheddar, A., Barthelemy, S., Boissonnas, A. & Combadière, C. Revising CX3CR1 expression on murine classical and non-classical monocytes. Elülső. Immunol. 11, 1117 (2020).

    Cikk  CAS  Google Scholar 

  • Kinne, R. W. Macrophages in rheumatoid arthritis. Arthritis Res. Ther. 2, 189 (2000).

  • Veiga, N. et al. Terápiás fehérjéket expresszáló módosított mRNS sejtspecifikus szállítása a leukocitákba. Nat. Commun. 9, 4493 (2018).

    Cikk  Google Scholar 

  • Wyatt Shields, C. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Cikk  Google Scholar 

  • Kumar, R. A., Li, Y., Dang, Q. & Yang, F. Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int. Immunopharmacol. 65, 348 – 359 (2018).

    Cikk  Google Scholar 

  • Kim, J. & Sahay, G. Nanomedicine hitchhikes on neutrophils to the inflamed lung. Nat. Nanotechnol. 17, 1 – 2 (2021).

    Cikk  Google Scholar 

  • Palchetti, S. et al. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta Biomembr. 1858, 189 – 196 (2016).

    Cikk  CAS  Google Scholar 

  • Schöttler, S. et al. A poli(etilénglikol) és poli(foszfoészter) bevonatú nanohordozók lopakodó hatásához fehérjeadszorpció szükséges. Nat. Nanotechnol. 11, 372 – 377 (2016).

    Cikk  Google Scholar 

  • Francia, V., Schiffelers, RM, Cullis, PR & Witzigmann, D. A lipid nanorészecskék biomolekuláris koronája génterápiához. Bioconjugate Chem. 31, 2046 – 2059 (2020).

    Cikk  CAS  Google Scholar 

  • Dale, D. C., Boxer, L., & Liles, W. C. The phagocytes: neutrophils and monocytes. Vér 112, 935 – 945 (2008).

    Cikk  CAS  Google Scholar 

  • Leuschner, F. et al. Terápiás siRNS elnémítása gyulladásos monocitákban egerekben. Nat. Biotechnol. 29, 1005 – 1010 (2011).

    Cikk  CAS  Google Scholar 

  • Novobrantseva, T. I. et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol. Ott. Nukleinsavak 1, e4 (2012).

    Cikk  Google Scholar 

  • Li, C. et al. A Pfizer-BioNTech BNT162b2 vakcinával szembeni veleszületett és adaptív immunitás mechanizmusai. Nat. Immunol. 23, 543 – 555 (2022).

    Cikk  CAS  Google Scholar 

  • Lenart, K. et al. A third dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances quality and quantity of immune responses. Mol. Ott. Methods Clin. Dev. 27, 309 – 323 (2022).

    Cikk  CAS  Google Scholar 

  • Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. & Nemati, M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 257, 118102 (2020).

    Cikk  CAS  Google Scholar 

  • Martinez, F. O., Combes, T. W., Orsenigo, F. & Gordon, S. Monocyte activation in systemic Covid-19 infection: assay and rationale. eBioMedicine 59, 102964 (2020).

    Cikk  CAS  Google Scholar 

  • Zhang, D. et al. COVID‐19 infection induces readily detectable morphologic and inflammation‐related phenotypic changes in peripheral blood monocytes. J. Leukoc. Biol. 109, 13 – 22 (2020).

  • Pence, B. D. Severe COVID-19 and aging: are monocytes the key? GeroScience 42, 1051 – 1061 (2020).

    Cikk  CAS  Google Scholar 

  • Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R. & Salem, R. The COVID-19 cytokine storm; what we know so far. Elülső. Immunol. 11, 1446 (2020).

    Cikk  CAS  Google Scholar 

  • Yoshimura, T. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. A citokin 98, 71 – 78 (2017).

    Cikk  CAS  Google Scholar 

  • Parihar, A., Eubank, T. D. & Doseff, A. I. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Inte Immun. 2, 204 – 215 (2010).

    Cikk  Google Scholar 

  • Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2, 1 (2014).

    Cikk  Google Scholar 

  • Lammers, T. et al. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 15, 622 – 624 (2020).

    Cikk  CAS  Google Scholar 

  • Benchimol, M. J., Bourne, D., Moghimi, S. M. & Simberg, D. Pharmacokinetic analysis reveals limitations and opportunities for nanomedicine targeting of endothelial and extravascular compartments of tumors. J. Drug Target. 27, 690 – 698 (2019).

    Cikk  Google Scholar 

  • Fang, J., Nakamura, H. & Maeda, H. Az EPR-hatás: a daganatos vérerek egyedi jellemzői a gyógyszerszállításhoz, az érintett tényezők, valamint a hatás korlátozásai és fokozása. Adv. Gyógyszer szállítás. Fordulat. 63, 136 – 151 (2011).

    Cikk  CAS  Google Scholar 

  • Brocato, T. A. et al. Understanding the connection between nanoparticle uptake and cancer treatment efficacy using mathematical modeling. Sci. Ismétlés. 8, 7538 (2018).

    Cikk  Google Scholar 

  • Avnir, Y. et al. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: a novel approach to treating autoimmune arthritis. Arthritis Rheum. 58, 119 – 129 (2008).

    Cikk  CAS  Google Scholar 

  • Avnir, Y. et al. Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS ONE 6, e25721 (2011).

    Cikk  CAS  Google Scholar 

  • Verbeke, R. et al. Broadening the message: a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells. ACS Nano 13, 1655 – 1669 (2019).

    CAS  Google Scholar 

  • Kulkarni, JA et al. Makromolekuláris hasznos terhelést tartalmazó lipid nanorészecskék fúziófüggő képződése. A nanoméretű 11, 9023 – 9031 (2019).

    Cikk  CAS  Google Scholar 

  • Kulkarni, JA et al. Ionizálható kationos lipideket és siRNS-t tartalmazó lipid nanorészecskék képződéséről és morfológiájáról. ACS Nano 12, 4787 – 4795 (2018).

    Cikk  CAS  Google Scholar 

  • Hirota, S., De Ilarduya, C. T., Barron, L. G. & Szoka, F. C. Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes). Biotechnikák 27, 286 – 290 (1999).

    Cikk  CAS  Google Scholar 

  • Kulkarni, J. A. et al. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. A nanoméretű 9, 13600 – 13609 (2017).

    Cikk  CAS  Google Scholar 

  • Kannan, K., Ortmann, R. A. & Kimpel, D. Animal models of rheumatoid arthritis and their relevance to human disease. Kórélettan 12, 167 – 181 (2005).

    Cikk  Google Scholar 

  • Seemann, S., Zohles, F. & Lupp, A. Comprehensive comparison of three different animal models for systemic inflammation. J. Biomed. Sci. 24, 60 (2017).

    Cikk  Google Scholar 

  • Időbélyeg:

    Még több Természet Nanotechnológia