Antiferromagneettiset puoliskyrmionit, jotka on tuotettu sähköisesti ja joita ohjataan huoneenlämpötilassa

Antiferromagneettiset puoliskyrmionit, jotka on tuotettu sähköisesti ja joita ohjataan huoneenlämpötilassa

Lähdesolmu: 2637421
  • Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181 (1973).

    Artikkeli  CAS  Google Scholar 

  • Shinjo, T., Okuno, T., Hassdorf, R., Shigeto, K. & Ono, T. Magneettinen pyörreytimen havainto pyöreissä permalloypisteissä. tiede 289, 930 – 932 (2000).

    Artikkeli  CAS  Google Scholar 

  • Kläui, M. et al. Current-induced vortex nucleation and annihilation in vortex domain walls. Appi. Phys. Lett. 88, 232507 (2006).

    Artikkeli  Google Scholar 

  • Jiang, W. et ai. Puhaltaa magneettisia skyrmion-kuplia. tiede 349, 283 – 286 (2015).

    Artikkeli  CAS  Google Scholar 

  • Coïsson, M. Magnetic vortex chirality determination via local hysteresis loops measurements with magnetic force microscopy. Sei. Rep. 6, 29904 (2016).

    Artikkeli  Google Scholar 

  • Gao, N. et al. Creation and annihilation of topological meron pairs in in-plane magnetized films. Nat. Commun. 10, 5603 (2019).

    Artikkeli  CAS  Google Scholar 

  • Gao, Y. et al. Spontaneous (anti)meron chains in the domain walls of van der Waals ferromagnetic Fe5-xGete2. Adv. Mater. 32, 2005228 (2020).

    Artikkeli  CAS  Google Scholar 

  • Li, Z. et al. Field-free topological behavior in the magnetic domain wall of ferrimagnetic GdFeCo. Nat. Commun. 12, 5604 (2021).

    Artikkeli  CAS  Google Scholar 

  • Wang, Y. et al. Electric field-driven rotation of magnetic vortex originating from magnetic anisotropy reorientation. Adv. Elektroni. Mater. 8, 2100561 (2021).

    Artikkeli  Google Scholar 

  • Zhang, S. et al. Direct imaging of an inhomogeneous electric current distribution using the trajectory of magnetic half-skyrmions. Sei. Adv. 6, eaay1876 (2020).

    Artikkeli  CAS  Google Scholar 

  • Göbel, B., Mook, A., Henk, J., Mertig, I. & Tretiakov, O. A. Magnetic bimerons as skyrmion analogues in in-plane magnets. Phys. Ilm. B 99, 060407 (2019).

    Artikkeli  Google Scholar 

  • Göbel, B., Mertig, I. & Tretiakov, O. A. Beyond skyrmions: review and perspectives of alternative magnetic quasiparticles. Phys. Edustaja 895, 1 – 28 (2021).

    Artikkeli  Google Scholar 

  • Barker, J. & Tretiakov, O. A. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Lett. 116, 147203 (2016).

    Artikkeli  Google Scholar 

  • Thiele, A. A. Steady-state motion of magnetic domains. Phys. Lett. 30, 230 – 233 (1973).

    Artikkeli  Google Scholar 

  • Tretiakov, O. A. et al. Dynamics of domain walls in magnetic nanostrips. Phys. Lett. 100, 127204 (2008).

    Artikkeli  CAS  Google Scholar 

  • Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Lett. 110, 127208 (2013).

    Artikkeli  Google Scholar 

  • Kolesnikov, A. G. et al. Composite topological structure of domain walls in synthetic antiferromagnets. Sei. Rep. 8, 15794 (2018).

    Artikkeli  CAS  Google Scholar 

  • Sort, J. et al. Imprinting vortices into antiferromagnets. Phys. Lett. 97, 067201 (2006).

    Artikkeli  CAS  Google Scholar 

  • Wu, J. et al. Direct observation of imprinted antiferromagnetic vortex states in CoO/Fe/Ag(001) discs. Nat. Phys. 7, 303 – 306 (2011).

    Artikkeli  CAS  Google Scholar 

  • Chmiel, FP et ai. Magneettisten pyörreparien havaitseminen huoneenlämpötilassa tasaisessa a-Fe: ssä2O3/ Co heterostruktuuri. Nat. Mater. 17, 581 – 585 (2018).

    Artikkeli  CAS  Google Scholar 

  • Gao, S. et al. Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings. luonto 586, 37 – 41 (2020).

    Artikkeli  CAS  Google Scholar 

  • Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. luonto 590, 74 – 79 (2021).

    Artikkeli  CAS  Google Scholar 

  • Wadley, P. et ai. Antiferromagneetin sähköinen kytkentä. tiede 351, 587 – 590 (2016).

    Artikkeli  CAS  Google Scholar 

  • Grzybowski, M. J. et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Lett. 118, 057701 (2017).

    Artikkeli  CAS  Google Scholar 

  • Olejník, K. et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017).

    Artikkeli  Google Scholar 

  • Olejník, K. et ai. Terahertzin sähköinen kirjoitusnopeus antiferromagneettisessa muistissa. Sei. Adv. 4, eaar3566 (2018).

    Artikkeli  Google Scholar 

  • Wadley, P. et ai. Antiferromagneettisten domeenien virran napaisuudesta riippuvainen manipulointi. Nat. Nanotekniikka. 13, 362 – 365 (2018).

    Artikkeli  CAS  Google Scholar 

  • Kašpar, Z. et al. Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat. Elektroni. 4, 30 – 37 (2021).

    Artikkeli  Google Scholar 

  • Zubáč, J. et al. Hysteretic effects and magnetotransport of electrically switched CuMnAs. Phys. Ilm. B 104, 184424 (2021).

    Artikkeli  Google Scholar 

  • Krizek, F. et al. Molecular beam epitaxy of CuMnAs. Phys. Pastori Mater. 4, 014409 (2020).

    Artikkeli  CAS  Google Scholar 

  • Janda, T. et al. Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs. Phys. Pastori Mater. 4, 094413 (2020).

    Artikkeli  CAS  Google Scholar 

  • Wadley, P. et al. Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films. Sei. Rep. 7, 11147 (2017).

    Artikkeli  CAS  Google Scholar 

  • Reimers, S. et al. Defect-driven antiferromagnetic domain walls in CuMnAs films. Nat. Commun. 13, 724 (2022).

    Artikkeli  CAS  Google Scholar 

  • Máca, F. et al. Physical properties of the tetragonal CuMnAs: a first-principles study. Phys. Ilm. B 96, 094406 (2017).

    Artikkeli  Google Scholar 

  • Kurebayashi, D. & Tretiakov, O. A. Skyrmion nucleation on the surface of a topological insulator. Phys. Rev. Res. 4, 043105 (2022).

    Artikkeli  CAS  Google Scholar 

  • Hertel, R. & Schneider, C. M. Exchange explosions: magnetization dynamics during vortex–antivortex annihilation. Phys. Lett. 97, 177202 (2006).

    Artikkeli  Google Scholar 

  • Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin–orbit torques. Phys. Lett. 117, 017202 (2016).

    Artikkeli  CAS  Google Scholar 

  • Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sei. Rep. 4, 6784 (2014).

    Artikkeli  CAS  Google Scholar 

  • Geng, L. D. & Jin, Y. M. Magnetic vortex racetrack memory. J. Magn. Magn. Mater. 423, 84 – 89 (2017).

    Artikkeli  CAS  Google Scholar 

  • Juge, R. et al. Helium ions put magnetic skyrmions on the track. Nano Lett. 21, 2989 – 2996 (2021).

    Artikkeli  CAS  Google Scholar 

  • Yu, H., Xiao, J. & Schultheiss, H. Magnetic texture based magnonics. Phys. Edustaja 905, 1 – 59 (2021).

    Artikkeli  CAS  Google Scholar 

  • Aikaleima:

    Lisää aiheesta Luonnon nanoteknologia