最小场景中的量子关联

最小场景中的量子关联

源节点: 2527781

盛普·勒1, 基娅拉梅罗尼2, 伯恩德·斯特姆费尔斯3,4, 莱因哈德 F.维尔纳5, 和蒂莫·齐格勒5

1维也纳量子光学和量子信息研究所,Boltzmanngasse 3 1090 Vienna, Austria
2数学计算与实验研究所,121 South Main Street Providence RI 02903,美国
3马克斯·普朗克莱比锡科学数学研究所,Inselstrasse 22 04103 Leipzig, Germany
4加州大学伯克利分校数学系,970 Evans Hall #3840 Berkeley CA 94720-3840,美国
5Insitute für Theoretische Physik, Leibniz Universität Hannover, Appelstrasse 2 30167 Hannover, 德国

觉得本文有趣或想讨论? 在SciRate上发表评论或发表评论.

抽象

在量子相关的最小场景中,双方可以从两个可观察到的结果中进行选择,每个可观察到的结果有两个。 概率由四个边缘和四个相关性指定。 由此产生的四维凸相关体,表示为 $mathcal{Q}$,是量子信息论的基础。 我们回顾并系统化了有关 $mathcal{Q}$ 的知识,并添加了许多细节、可视化和完整的证明。 特别是,我们提供了边界的详细描述,边界由与椭圆同构的三维面和暴露的极值点的六次代数流形组成。 这些补丁由未暴露的极值点的立方体表面分开。 我们提供所有极值点的三角参数化,以及它们暴露的 Tsirelson 不等式和量子模型。 所有非经典极值点(暴露与否)都是自测的,即由本质上独特的量子模型实现。
Two principles, which are specific to the minimal scenario, allow a quick and complete overview: The first is the pushout transformation, i.e., the application of the sine function to each coordinate. This transforms the classical correlation polytope exactly into the correlation body $mathcal{Q}$, also identifying the boundary structures. The second principle, self-duality, is an isomorphism between $mathcal{Q}$ and its polar dual, i.e., the set of affine inequalities satisfied by all quantum correlations (“Tsirelson inequalities''). The same isomorphism links the polytope of classical correlations contained in $mathcal{Q}$ to the polytope of no-signalling correlations, which contains $mathcal{Q}$.
我们还讨论了通过固定希尔伯特空间维度、固定状态或固定可观察量实现的相关集,并为涉及相关矩阵行列式的 $mathcal{Q}$ 建立了一个新的非线性不等式。

自量子理论诞生以来,表征和理解一组允许的量子相关性一直是一个重要目标。 在这项工作中,我们从几何和应用等几个角度对最小的非平凡场景中的量子关联集提供了最全面的理解。 我们用大量的三个维度的精确可视化来补充我们的理论理解。

►BibTeX数据

►参考

[1] Alain Aspect, Philippe Grangier, and Gérard Roger. ``Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell's inequalities''. Phys. Rev. Lett. 49, 91–94 (1982).
https:/ / doi.org/ 10.1103 / PhysRevLett.49.91

[2] B. Hensen, R. Hanson, et al. ``Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres''. Nature 526, 682 EP – (2015). arXiv:1508.05949.
https:/ / doi.org/10.1038/nature15759
的arXiv:1508.05949

[3] N. Sangouard, J.-D. Bancal, N. Gisin, W. Rosenfeld, P. Sekatski, M. Weber, and H. Weinfurter. ``Loophole-free Bell test with one atom and less than one photon on average''. Phys. Rev. A 84, 052122 (2011). arXiv:1108.1027.
https:/ / doi.org/ 10.1103 / PhysRevA.84.052122
的arXiv:1108.1027

[4] JS 贝尔. “论爱因斯坦波多尔斯基·罗森悖论”。物理学 1, 195–200 (1964)。
https:///doi.org/10.1103/PhysicsPhysiqueFizika.1.195

[5] 约翰·F·克劳瑟、迈克尔·A·霍恩、阿布纳·希莫尼和理查德·A·霍尔特。 “提议的测试局部隐变量理论的实验”。物理。莱特牧师。 23, 880–884 (1969)。
https:/ / doi.org/ 10.1103 / PhysRevLett.23.880

[6] R. F. Werner et al. ``Open quantum problems''. url: https:/​/​oqp.iqoqi.oeaw.ac.at/​.
https:// / oqp.iqoqi.oeaw.ac.at/

[7] Boris S. Tsirelson. ``Quantum analogues of the Bell inequalities. the case of two spatially separated domains''. J. Soviet Math. 36, 557–570 (1987).
https:/ / doi.org/ 10.1007 / BF01663472

[8] R. F. Werner and M. M. Wolf. ``All multipartite Bell-correlation inequalities for two dichotomic observables per site''. Phys. Rev. A 64, 032112 (2001). arXiv:quant-ph/​0102024.
https:/ / doi.org/ 10.1103 / PhysRevA.64.032112
arXiv:quant-ph / 0102024

[9] William Slofstra. ``The set of quantum correlations is not closed''. Forum of Mathematics, Pi 7, e1 (2019). arXiv:1703.08618.
https:///doi.org/10.1017/fmp.2018.3
的arXiv:1703.08618

[10] Volkher B. Scholz and R. F. Werner. ``Tsirelson's problem'' (2008). arXiv:0812.4305.
的arXiv:0812.4305

[11] Boris S Tsirelson. ``Some results and problems on quantum Bell-type inequalities''. Hadronic Journal Supplement 8, 329–345 (1993). url: https:/​/​www.tau.ac.il/​ tsirel/​download/​hadron.html.
https:///www.tau.ac.il/~tsirel/download/hadron.html

[12] Miguel Navascues, Stefano Pironio, and Antonio Acín. ``A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations''. New J. Phys. 10, 073013 (2008).
https:/​/​doi.org/​10.1088/​1367-2630/​10/​7/​073013

[13] M. Junge, M. Navascues, C. Palazuelos, D. Perez-Garcia, V. B. Scholz, and R. F. Werner. ``Connes' embedding problem and Tsirelson's problem''. J. Math. Phys. 52, 012102 (2011). arXiv:1008.1142.
https:/ / doi.org/10.1063/ 1.3514538
的arXiv:1008.1142

[14] Tobias Fritz. ``Tsirelson's problem and Kirchberg's conjecture''. Rev. Math. Phys. 24, 1250012 (2012). arXiv:1008.1168.
https:/ / doi.org/ 10.1142 / S0129055X12500122
的arXiv:1008.1168

[15] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. ``MIP*=RE'' (2020). arXiv:2001.04383.
的arXiv:2001.04383

[16] Günther M. Ziegler. ``Lectures on polytopes''. Springer. Berlin (1995).
https:/​/​doi.org/​10.1007/​978-1-4613-8431-1

[17] Mateusz Michałek and Bernd Sturmfels. ``Invitation to nonlinear algebra''. Volume 211 of Graduate Studies in Mathematics. AMS. (2021).
https:/ / doi.org/ 10.1007 / s00591-022-00324-z

[18] Grigoriy Blekherman, Pablo Parrilo, and Rekha Thomas. ``Semidefinite optimization and convex algebraic geometry''. MOS-SIAM Series on Optimization 13. SIAM. Philadelphia (2012).
https:/ / doi.org/10.1137/ 1.9781611972290

[19] Bernd Sturmfels and Caroline Uhler. ``Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry''. Ann. Inst. Statist. Math. 62, 603–638 (2010). arXiv:0906.3529.
https:/​/​doi.org/​10.1007/​s10463-010-0295-4
的arXiv:0906.3529

[20] Claus Scheiderer. ``Spectrahedral shadows''. SIAM J. Appl. Algebra Geometry 2, 26–44 (2018). arXiv:1612.07048.
https:/ / doi.org/ 10.1137 / 17M1118981
的arXiv:1612.07048

[21] B. S. Cirel'son. ``Quantum generalizations of Bell's inequality''. Lett. Math. Phys. 4, 93–100 (1980).
https:/ / doi.org/ 10.1007 / BF00417500

[22] Jukka Kiukas and Reinhard F. Werner. ``Maximal violation of Bell inequalities by position measurements''. J. Math. Phys. 51, 072105 (2010). arXiv:0912.3740.
https:/ / doi.org/10.1063/ 1.3447736
的arXiv:0912.3740

[23] Lawrence J. Landau. ``Empirical two-point correlation functions''. Found. Phys. 18, 449–460 (1988).
https:/ / doi.org/ 10.1007 / BF00732549

[24] L Masanes. ``Necessary and sufficient condition for quantum-generated correlations'' (2003) arXiv:quant-ph/​0309137.
arXiv:quant-ph / 0309137

[25] Yukun Wang, Xingyao Wu, and Valerio Scarani. ``All the self-testings of the singlet for two binary measurements''. New J. Phys. 18, 025021 (2016). arXiv:1511.04886.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​025021
的arXiv:1511.04886

[26] Andrew C Doherty, Yeong-Cherng Liang, Ben Toner, and Stephanie Wehner. ``The quantum moment problem and bounds on entangled multi-prover games''. In 23rd Annual IEEE Conference on Computational Complexity. Pages 199–210. IEEE (2008). arXiv:0803.4373.
https:///doi.org/10.1109/CCC.2008.26
的arXiv:0803.4373

[27] Tobias Fritz. ``Polyhedral duality in Bell scenarios with two binary observables''. J. Math. Phys. 53, 072202 (2012). arXiv:1202.0141.
https:/ / doi.org/10.1063/ 1.4734586
的arXiv:1202.0141

[28] Dominic Mayers and Andrew Yao. ``Self testing quantum apparatus''. Quantum Info. Comput. 4, 273–286 (2004). arXiv:quant-ph/​0307205.
https:///doi.org/10.26421/QIC4.4-3
arXiv:quant-ph / 0307205

[29] Stephen J. Summers and Reinhard F. Werner. ``Maximal violation of Bell's inequalities is generic in quantum field theory''. Commun. Math. Phys. 110, 247–259 (1987).
https:/ / doi.org/ 10.1007 / BF01207366

[30] L Masanes. ``Extremal quantum correlations for n parties with two dichotomic observables per site'' (2005) arXiv:quant-ph/​0512100.
arXiv:quant-ph / 0512100

[31] Le Phuc Thinh, Antonios Varvitsiotis, and Yu Cai. ``Geometric structure of quantum correlators via semidefinite programming''. Phys. Rev. A 99, 052108 (2019). arXiv:1809.10886.
https:/ / doi.org/ 10.1103 / PhysRevA.99.052108
的arXiv:1809.10886

[32] 尼古拉斯·布伦纳、丹尼尔·卡瓦尔坎蒂、斯特凡诺·皮罗尼奥、瓦莱里奥·斯卡拉尼和斯蒂芬妮·韦纳。 “贝尔非定域性”。修订版 Mod。物理。 86, 419–478 (2014)。 arXiv:1303.2849。
https:/ / doi.org/ 10.1103 / RevModPhys.86.419
的arXiv:1303.2849

[33] Koon Tong Goh, Jędrzej Kaniewski, Elie Wolfe, Tamás Vértesi, Xingyao Wu, Yu Cai, Yeong-Cherng Liang, and Valerio Scarani. ``Geometry of the set of quantum correlations''. Phys. Rev. A 97, 022104 (2018). arXiv:1710.05892.
https:/ / doi.org/ 10.1103 / PhysRevA.97.022104
的arXiv:1710.05892

[34] Ivan Šupić and Joseph Bowles. ``Self-testing of quantum systems: a review''. Quantum 4, 337 (2020). arXiv:1904.10042.
https:/​/​doi.org/​10.22331/​q-2020-09-30-337
的arXiv:1904.10042

[35] Rene Schwonnek, Koon Tong Goh, Ignatius W. Primaatmaja, Ernest Y. Z. Tan, Ramona Wolf, Valerio Scarani, and Charles C. W. Lim. ``Device-independent quantum key distribution with random key basis''. Nat. Commun. 12, 2880 (2020). arXiv:2005.02691.
https:/​/​doi.org/​10.1038/​s41467-021-23147-3
的arXiv:2005.02691

[36] Ernest Y. Z. Tan, René Schwonnek, Koon Tong Goh, Ignatius William Primaatmaja, and Charles C. W. Lim. ``Computing secure key rates for quantum key distribution with untrusted devices''. npj Quantum Inf. 7, 158 (2021). arXiv:1908.11372.
https:/ / doi.org/ 10.1038 / s41534-021-00494-z
的arXiv:1908.11372

[37] K. G. H. Vollbrecht and R. F. Werner. ``Entanglement measures under symmetry''. Phys. Rev. A 64, 062307 (2001). arXiv:quant-ph/​0010095.
https:/ / doi.org/ 10.1103 / PhysRevA.64.062307
arXiv:quant-ph / 0010095

[38] Peter Bierhorst. ``Geometric decompositions of Bell polytopes with practical applications''. J. Phys. A 49, 215301 (2016). arXiv:1511.04127.
https:/​/​doi.org/​10.1088/​1751-8113/​49/​21/​215301
的arXiv:1511.04127

[39] Monique Laurent. ``The real positive semidefinite completion problem for series-parallel graphs''. Linear Algebra and its Applications 252, 347–366 (1997).
https:/​/​doi.org/​10.1016/​0024-3795(95)00741-5

[40] Vaughan F. R. Jones and J. H. Przytycki. ``Lissajous knots and billiard knots''. Banach Cent. Pub. 42, 145–163 (1998).
https:/​/​doi.org/​10.4064/​-42-1-145-163

[41] Kaie Kubjas, Pablo A Parrilo, and Bernd Sturmfels. ``How to flatten a soccer ball''. In Aldo Conca, Joseph Gubeladze, and Tim Römer, editors, Homological and Computational Methods in Commutative Algebra. Volume 20 of INdAM Ser., pages 141–162. Springer (2017).
https:/​/​doi.org/​10.1007/​978-3-319-61943-9_9

[42] Kathleen S. Gibbons, Matthew J. Hoffman, and William K. Wootters. ``Discrete phase space based on finite fields''. Phys. Rev. A 70, 062101 (2004). arXiv:quant-ph/​0401155.
https:///doi.org/10.1103/physreva.70.062101
arXiv:quant-ph / 0401155

[43] Reinhard F. Werner. ``Uncertainty relations for general phase spaces''. Frontiers of Physics 11, 1–10 (2016). arXiv:arxiv:1601.03843.
https:/​/​doi.org/​10.1007/​s11467-016-0558-5
的arXiv:1601.03843

[44] Amritanshu Prasad, Ilya Shapiro, and M.K. Vemuri. ``Locally compact abelian groups with symplectic self-duality''. Adv. Math. 225, 2429–2454 (2010). arXiv:0906.4397.
https:/ / doi.org/ 10.1016/ j.aim.2010.04.023
的arXiv:0906.4397

[45] Daniel Ciripoi, Nidhi Kaihnsa, Andreas Löhne, and Bernd Sturmfels. ``Computing convex hulls of trajectories''. Rev. Un. Mat. Argentina 60, 637–662 (2019). arXiv:1810.03547.
https://doi.org/10.33044/revuma.v60n2a22
的arXiv:1810.03547

[46] Daniel Plaumann, Rainer Sinn, and Jannik Lennart Wesner. ``Families of faces and the normal cycle of a convex semi-algebraic set''. Beitr. Algebra Geom. (2022). arXiv:2104.13306.
https:/​/​doi.org/​10.1007/​s13366-022-00657-9
的arXiv:2104.13306

[47] Daniel R. Grayson and Michael E. Stillman. ``Macaulay2, a software system for research in algebraic geometry''. Available at http:/​/​www.math.uiuc.edu/​Macaulay2/​.
http:///​www.math.uiuc.edu/​Macaulay2/​

[48] John Ottem, Kristian Ranestad, Bernd Sturmfels, and Cynthia Vinzant. ``Quartic spectrahedra''. Mathematical Programming, Ser. B 151, 585–612 (2015). arXiv:1311.3675.
https:/​/​doi.org/​10.1007/​s10107-014-0844-3
的arXiv:1311.3675

[49] Adán Cabello. ``How much larger quantum correlations are than classical ones''. Phys. Rev. A 72, 012113 (2005). arXiv:quant-ph/​0409192.
https:/ / doi.org/ 10.1103 / PhysRevA.72.012113
arXiv:quant-ph / 0409192

[50] C. E. González-Guillén, C. H. Jiménez, C. Palazuelos, and I. Villanueva. ``Sampling quantum nonlocal correlations with high probability''. Commun. Math. Phys. 344, 141–154 (2016). arXiv:1412.4010.
https:/​/​doi.org/​10.1007/​s00220-016-2625-8
的arXiv:1412.4010

[51] C. R. Johnson and G. Nævdal. ``The probability that a (partial) matrix is positive semidefinite''. In I. Gohberg, R. Mennicken, and C. Tretter, editors, Recent Progress in Operator Theory. Pages 171–182. Basel (1998). Birkhäuser Basel.
https:/​/​doi.org/​10.1007/​978-3-0348-8793-9_10

[52] H. H Schaefer and M. P Wolff. ``Topological vector spaces''. Springer. (1999).
https:/​/​doi.org/​10.1007/​978-1-4612-1468-7

[53] Wojciech Tadej and Karol Z̀yczkowski. ``A concise guide to complex Hadamard matrices''. Open Systems & Information Dynamics 13, 133–177 (2006). arXiv:quant-ph/​0512154.
https:/​/​doi.org/​10.1007/​s11080-006-8220-2
arXiv:quant-ph / 0512154

[54] H. Barnum, C.P. Gaebler, and A. Wilce. ``Ensemble steering, weak self-duality, and the structure of probabilistic theories''. Found. Phys 43, 1411–1427 (2013). arXiv:0912.5532.
https:/​/​doi.org/​10.1007/​s10701-013-9752-2
的arXiv:0912.5532

[55] Nikos Yannakakis. ``Stampacchia's property, self-duality and orthogonality relations''. Set-Valued and Variational Analysis 19, 555–567 (2011). arXiv:1008.4958.
https:/ / doi.org/ 10.1007 / s11228-011-0175-y
的arXiv:1008.4958

[56] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. ``Real algebraic geometry''. Volume 36 of A Series of Modern Surveys in Mathematics. Springer Berlin, Heidelberg. (2013).
https:/​/​doi.org/​10.1007/​978-3-662-03718-8

[57] Joseph H. G. Fu. ``Algebraic integral geometry''. Pages 47–112. Springer Basel. Basel (2014). arXiv:1103.6256.
https:/​/​doi.org/​10.1007/​978-3-0348-0874-3_2
的arXiv:1103.6256

[58] Herbert Federer. ``Curvature measures''. Trans. Amer. Math. Soc. 93, 418–491 (1959).
https:/ / doi.org/10.2307/ 1993504

[59] Peter Wintgen. ``Normal cycle and integral curvature for polyhedra in Riemannian manifolds''. In Gy. Soos and J. Szenthe, editors, Differential Geometry. Volume 21. North-Holland, Amsterdam (1982).

[60] Martina Zähle. ``Integral and current representation of Federer's curvature measures''. Arch. Math. 46, 557–567 (1986).
https:/ / doi.org/ 10.1007 / BF01195026

[61] David Cohen-Steiner and Jean-Marie Morvan. ``Restricted Delaunay triangulations and normal cycle''. In SCG '03: Proceedings of the nineteenth annual symposium on Computational geometry. Pages 312–321. (2003).
https:/ / doi.org/10.1145/ 777792.777839

[62] Pierre Roussillon and Joan Alexis Glaunès. ``Surface matching using normal cycles''. In Frank Nielsen and Frédéric Barbaresco, editors, Geometric Science of Information. Pages 73–80. Cham (2017). Springer International Publishing.
https:/​/​doi.org/​10.1007/​978-3-319-68445-1_9

[63] Kehua Su, Na Lei, Wei Chen, Li Cui, Hang Si, Shikui Chen, and Xianfeng Gu. ``Curvature adaptive surface remeshing by sampling normal cycle''. Computer-Aided Design 111, 1–12 (2019).
https:// / doi.org/ 10.1016/ j.cad.2019.01.004

[64] David A. Cox, John Little, and Donal O'Shea. ``Ideals, varieties, and algorithms''. Undergraduate Texts in Mathematics. Springer Cham. (2015). Fourth edition.
https:/​/​doi.org/​10.1007/​978-3-319-16721-3

[65] Guido A. Raggio. ``A remark on Bell's inequality and decomposable normal states''. Lett. Math. Phys. 15, 27–29 (1988).
https:/ / doi.org/ 10.1007 / BF00416568

[66] Marc-Olivier Renou, David Trillo, Mirjam Weilenmann, Thinh P. Le, Armin Tavakoli, Nicolas Gisin, Antonio Acín, and Miguel Navascués. ``Quantum theory based on real numbers can be experimentally falsified''. Nature 600, 625–629 (2021). arXiv:2101.10873.
https:/​/​doi.org/​10.1038/​s41586-021-04160-4
的arXiv:2101.10873

[67] Andrea Coladangelo, Koon Tong Goh, and Valerio Scarani. ``All pure bipartite entangled states can be self-tested''. Nature Commun. 8, 15485 (2017). arXiv:1611.08062.
https:///doi.org/10.1038/ncomms15485
的arXiv:1611.08062

[68] Charles H. Bennett and Gilles Brassard. ``Quantum cryptography: Public key distribution and coin tossing''. Theoret. Comp. Sci. 560, 7–11 (2014). arXiv:2003.06557.
https:///doi.org/10.1016/j.tcs.2014.05.025
的arXiv:2003.06557

[69] T. Franz, F. Furrer, and R. F. Werner. ``Extremal quantum correlations and cryptographic security''. Phys. Rev. Lett. 106, 250502 (2011). arXiv:1010.1131.
https:/ / doi.org/ 10.1103 / PhysRevLett.106.250502
的arXiv:1010.1131

[70] Jędrzej Kaniewski. ``Weak form of self-testing''. Phys. Rev. Research 2, 033420 (2020). arXiv:1910.00706.
https:/ / doi.org/ 10.1103 / PhysRevResearch.2.033420
的arXiv:1910.00706

[71] C. H. Bennett, G. Brassard, C. Crepeau, and U. M. Maurer. ``Generalized privacy amplification''. IEEE Transactions on Information Theory 41, 1915–1923 (1995).
https:/ / doi.org/10.1109/ 18.476316

[72] Pavel Sekatski, Jean-Daniel Bancal, Xavier Valcarce, Ernest Y.-Z. Tan, Renato Renner, and Nicolas Sangouard. ``Device-independent quantum key distribution from generalized CHSH inequalities''. Quantum 5, 444 (2021). arXiv:2009.01784.
https:/​/​doi.org/​10.22331/​q-2021-04-26-444
的arXiv:2009.01784

[73] Ernest Y.-Z. Tan, Pavel Sekatski, Jean-Daniel Bancal, René Schwonnek, Renato Renner, Nicolas Sangouard, and Charles C.-W. Lim. ``Improved DIQKD protocols with finite-size analysis''. Quantum 6, 880 (2022). arXiv:2012.08714.
https:/​/​doi.org/​10.22331/​q-2022-12-22-880
的arXiv:2012.08714

[74] Marissa Giustina et al. ``Significant-loophole-free test of Bell's theorem with entangled photons''. Phys. Rev. Lett. 115, 250401 (2015). arXiv:1511.03190.
https:/ / doi.org/ 10.1103 / PhysRevLett.115.250401
的arXiv:1511.03190

[75] Lynden K. Shalm et al. ``Strong loophole-free test of local realism''. Phys. Rev. Lett. 115, 250402 (2015). arXiv:1511.03189.
https:/ / doi.org/ 10.1103 / PhysRevLett.115.250402
的arXiv:1511.03189

[76] D. P Nadlinger, J.-D. Bancal, and et al. ``Experimental quantum key distribution certified by Bell's theorem''. Nature 607, 682–686 (2022). arXiv:2109.14600.
https:/​/​doi.org/​10.1038/​s41586-022-04941-5
的arXiv:2109.14600

[77] Wei Zhang, Harald Weinfurter, et al. ``A device-independent quantum key distribution system for distant users''. Nature 607, 687–691 (2022). arXiv:2110.00575.
https:/ / doi.org/ 10.1038 / s41586-022-04891-y
的arXiv:2110.00575

[78] Feihu Xu, Yu-Zhe Zhang, Qiang Zhang, and Jian-Wei Pan. ``Device-independent quantum key distribution with random postselection''. Phys. Rev. Lett. 128, 110506 (2022). arXiv:2110.02701.
https:/ / doi.org/ 10.1103 / PhysRevLett.128.110506
的arXiv:2110.02701

[79] Wikipedia authors. ``Quantum key distribution''. url: https:/​/​en.wikipedia.org/​wiki/​Quantum_key_distribution. (accessed: 25-October-2021).
https://en.wikipedia.org/wiki/Quantum_key_distribution

[80] Armin Tavakoli, Máté Farkas, Denis Rosset, Jean-Daniel Bancal, and Jedrzej Kaniewski. ``Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments''. Science Advances 7, eabc3847 (2021). arXiv:1912.03225.
https://doi.org/10.1126/sciadv.abc3847
的arXiv:1912.03225

[81] Stephen J. Summers and Reinhard F. Werner. ``Maximal violation of Bell's inequalities for algebras of observables in tangent spacetime regions''. Ann. Inst. H. Poincaré. 49, 215–243 (1988).

[82] N. David Mermin. ``Is the moon there when nobody looks? Reality and the quantum theory''. Physics Today 38, 38–47 (1985).
https:/ / doi.org/10.1063/ 1.880968

[83] Michael Janas, Michael E. Cuffaro, and Michel Janssen. ``Putting probabilities first. How Hilbert space generates and constrains them'' (2019) arXiv:1910.10688.
的arXiv:1910.10688

[84] Nicolas Brunner, Stefano Pironio, Antonio Acín, Nicolas Gisin, André Allan Méthot, and Valerio Scarani. ``Testing the dimension of Hilbert spaces''. Phys. Rev. Lett. 100, 210503 (2008). arXiv:0802.0760.
https:/ / doi.org/ 10.1103 / PhysRevLett.100.210503
的arXiv:0802.0760

[85] Yu Cai, Jean-Daniel Bancal, Jacquiline Romero, and Valerio Scarani. ``A new device-independent dimension witness and its experimental implementation''. J. Phys. A 49, 305301 (2016). arXiv:1606.01602.
https:/​/​doi.org/​10.1088/​1751-8113/​49/​30/​305301
的arXiv:1606.01602

[86] Wan Cong, Yu Cai, Jean-Daniel Bancal, and Valerio Scarani. ``Witnessing irreducible dimension''. Phys. Rev. Lett. 119, 080401 (2017). arXiv:1611.01258.
https:/ / doi.org/ 10.1103 / PhysRevLett.119.080401
的arXiv:1611.01258

[87] R. Horodecki, P. Horodecki, and M. Horodecki. ``Violating Bell inequality by mixed spin-1/​2 states: necessary and sufficient condition''. Phys. Lett. A 200, 340–344 (1995).
https:/​/​doi.org/​10.1016/​0375-9601(95)00214-N

[88] N. Gisin. ``Bell's inequality holds for all non-product states''. Physics Letters A 154, 201–202 (1991).
https:/​/​doi.org/​10.1016/​0375-9601(91)90805-I

[89] R. Grone, C.R. Johnson, E.M. Sá, and H. Wolkowicz. ``Positive definite completions of partial Hermitian matrices''. Lin. Alg. Appl. 58, 109–124 (1984).
https:/​/​doi.org/​10.1016/​0024-3795(84)90207-6

[90] Alexander Barvinok. ``A course in convexity''. Graduate Studies in Mathematics 54. AMS. Providence (2002).
https:/ / doi.org/ 10.1090 / gsm / 054

[91] J. Dixmier. ``C*-algebras''. North-Holland mathematical library. North-Holland. (1982).

[92] M. Reed and B. Simon. ``Methods of modern mathematical physics IV: Analysis of operators''. Elsevier Science. (1978).

[93] Iain Raeburn and Allan M. Sinclair. ``The C*-algebra generated by two projections.''. Math. Scand. 65, 278–290 (1989).
https:/ / doi.org/ 10.7146 / math.scand.a-12283

[94] Roy Araiza, Travis Russell, and Mark Tomforde. ``A universal representation for quantum commuting correlations''. Ann. Henri Poinc. 23, 4489–4520 (2022). arXiv:2102.05827.
https:/​/​doi.org/​10.1007/​s00023-022-01197-7
的arXiv:2102.05827

[95] I. Pitowsky. ``Quantum probability – quantum logic''. Volume 321 of Lect.Notes Phys. Springer. (1989).
https:/ / doi.org/ 10.1007 / BFb0021186

[96] Dan Geiger, Christopher Meek, Bernd Sturmfels, et al. ``On the toric algebra of graphical models''. Ann. Statist. 34, 1463–1492 (2006). arXiv:math/​0608054.
https:/ / doi.org/10.1214/ 009053606000000263
arXiv:math / 0608054

被引用

[1] Antoni Mikos-Nuszkiewicz 和 Jędrzej Kaniewski,“CHSH 场景中量子集的极值点:猜想的解析解”, 的arXiv:2302.10658, (2023).

[2] José Jesus and Emmanuel Zambrini Cruzeiro, "Tight Bell inequalities from polytope slices", 的arXiv:2212.03212, (2022).

[3] Rafael Wagner, Rui Soares Barbosa, and Ernesto F. Galvão, "Inequalities witnessing coherence, nonlocality, and contextuality", 的arXiv:2209.02670, (2022).

[4] Lina Vandré and Marcelo Terra Cunha, "Quantum sets of the multicolored-graph approach to contextuality", 物理评论A 106 6,062210(2022).

以上引用来自 SAO / NASA广告 (最近成功更新为2023-03-22 14:01:01)。 该列表可能不完整,因为并非所有发布者都提供合适且完整的引用数据。

On Crossref 的引用服务 找不到有关引用作品的数据(上一次尝试2023-03-22 14:00:59)。

时间戳记:

更多来自 量子杂志