چھدم تفریق آپریٹرز کی موثر کوانٹم بلاک انکوڈنگ پر

چھدم تفریق آپریٹرز کی موثر کوانٹم بلاک انکوڈنگ پر

ماخذ نوڈ: 2694594

ہاویا لی1, ہانگ کانگ نی2، اور لیکسنگ ینگ1,2

1شعبہ ریاضی، سٹینفورڈ یونیورسٹی، سٹینفورڈ، CA 94305
2انسٹی ٹیوٹ فار کمپیوٹیشنل اینڈ میتھمیٹیکل انجینئرنگ، سٹینفورڈ یونیورسٹی، سٹینفورڈ، CA 94305

اس کاغذ کو دلچسپ لگتا ہے یا اس پر بات کرنا چاہتے ہیں؟ SciRate پر تبصرہ کریں یا چھوڑیں۔.

خلاصہ

Block encoding lies at the core of many existing quantum algorithms. Meanwhile, efficient and explicit block encodings of dense operators are commonly acknowledged as a challenging problem. This paper presents a comprehensive study of the block encoding of a rich family of dense operators: the pseudo-differential operators (PDOs). First, a block encoding scheme for generic PDOs is developed. Then we propose a more efficient scheme for PDOs with a separable structure. Finally, we demonstrate an explicit and efficient block encoding algorithm for PDOs with a dimension-wise fully separable structure. Complexity analysis is provided for all block encoding algorithms presented. The application of theoretical results is illustrated with worked examples, including the representation of variable coefficient elliptic operators and the computation of the inverse of elliptic operators without invoking quantum linear system algorithms (QLSAs).

Block encoding lies at the core of many existing quantum algorithms. Meanwhile, efficient and explicit block encodings of dense operators are commonly acknowledged as a challenging problem. This paper presents a comprehensive study of the block encoding of a rich family of dense operators: the pseudo-differential operators (PDOs). We develop novel block-encoding schemes for three types of PDOs with different structures. In addition to a thorough complexity analysis, we provide explicit examples where different PDOs are represented with the proposed block-encoding schemes.

► BibTeX ڈیٹا

► حوالہ جات

ہے [1] D. An and L. Lin. Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm. ACM Transactions on Quantum Computing, 3: 1–28, 2022. 10.1145/​3498331.
https://​doi.org/​10.1145/​3498331

ہے [2] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D. Somma. Simulating hamiltonian dynamics with a truncated taylor series. Physical review letters, 114: 090502, 2015. 10.1103/​PhysRevLett.114.090502.
https://​/​doi.org/​10.1103/​PhysRevLett.114.090502

ہے [3] G. Beylkin and L. Monzón. On approximation of functions by exponential sums. Applied and Computational Harmonic Analysis, 19: 17–48, 2005. 10.1016/​j.acha.2005.01.003.
https://​doi.org/​10.1016/​j.acha.2005.01.003

ہے [4] D. Camps and R. Van Beeumen. Fable: Fast approximate quantum circuits for block-encodings. In 2022 IEEE International Conference on Quantum Computing and Engineering (QCE), pages 104–113. IEEE, 2022. 10.1109/​QCE53715.2022.00029.
https://​doi.org/​10.1109/QCE53715.2022.00029

ہے [5] D. Camps, L. Lin, R. Van Beeumen, and C. Yang. Explicit quantum circuits for block encodings of certain sparse matrice. arXiv preprint arXiv:2203.10236, 2022. 10.48550/​arXiv.2203.10236.
https://​doi.org/​10.48550/​arXiv.2203.10236
آر ایکس سی: 2203.10236

ہے [6] Y. Cao, A. Papageorgiou, I. Petras, J. Traub, and S. Kais. Quantum algorithm and circuit design solving the poisson equation. New Journal of Physics, 15 (1): 013021, 2013. 10.1088/​1367-2630/​15/​1/​013021.
https:/​/​doi.org/​10.1088/​1367-2630/​15/​1/​013021

ہے [7] G. Castelazo, Q. T. Nguyen, G. De Palma, D. Englund, S. Lloyd, and B. T. Kiani. Quantum algorithms for group convolution, cross-correlation, and equivariant transformations. Physical Review A, 106: 032402, 2022. 10.1103/​PhysRevA.106.032402.
https://​/​doi.org/​10.1103/​PhysRevA.106.032402

ہے [8] R. Chao, D. Ding, A. Gilyen, C. Huang, and M. Szegedy. Finding angles for quantum signal processing with machine precision. arXiv preprint arXiv:2003.02831, 2020. 10.48550/​arXiv.2003.02831.
https://​doi.org/​10.48550/​arXiv.2003.02831
آر ایکس سی: 2003.02831

ہے [9] A. M. Childs, R. Kothari, and R. D. Somma. Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM Journal on Computing, 46: 1920–1950, 2017. 10.1137/​16M1087072.
https://​doi.org/​10.1137/​16M1087072

ہے [10] A. M. Childs, J.-P. Liu, and A. Ostrander. High-precision quantum algorithms for partial differential equations. Quantum, 5: 574, 2021. 10.22331/​q-2021-11-10-574.
https:/​/​doi.org/​10.22331/​q-2021-11-10-574

ہے [11] D. Coppersmith. An approximate fourier transform useful in quantum factoring. arXiv preprint quant-ph/​0201067, 2002. 10.48550/​arXiv.quant-ph/​0201067.
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0201067
arXiv:quant-ph/0201067

ہے [12] P. C. Costa, S. Jordan, and A. Ostrander. Quantum algorithm for simulating the wave equation. Physical Review A, 99: 012323, 2019. 10.1103/​PhysRevA.99.012323.
https://​/​doi.org/​10.1103/​PhysRevA.99.012323

ہے [13] P. C. Costa, D. An, Y. R. Sanders, Y. Su, R. Babbush, and D. W. Berry. Optimal scaling quantum linear-systems solver via discrete adiabatic theorem. PRX Quantum, 3: 040303, 2022. 10.1103/​PRXQuantum.3.040303.
https://​/​doi.org/​10.1103/​PRXQuantum.3.040303

ہے [14] A. J. da Silva and D. K. Park. Linear-depth quantum circuits for multiqubit controlled gates. Physical Review A, 106: 042602, 2022. 10.1103/​PhysRevA.106.042602.
https://​/​doi.org/​10.1103/​PhysRevA.106.042602

ہے [15] L. Demanet and L. Ying. Discrete symbol calculus. SIAM review, 53: 71–104, 2011. 10.1137/​080731311.
https://​doi.org/​10.1137/​080731311

ہے [16] Y. Dong, X. Meng, K. B. Whaley, and L. Lin. Efficient phase-factor evaluation in quantum signal processing. Physical Review A, 103: 042419, 2021. 10.1103/​PhysRevA.103.042419.
https://​/​doi.org/​10.1103/​PhysRevA.103.042419

ہے [17] Y. Dong, L. Lin, H. Ni, and J. Wang. Infinite quantum signal processing. arXiv preprint arXiv:2209.10162, 2022. 10.48550/​arXiv.2209.10162.
https://​doi.org/​10.48550/​arXiv.2209.10162
آر ایکس سی: 2209.10162

ہے [18] A. Gilyén, Y. Su, G. H. Low, and N. Wiebe. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019. 10.1145/​3313276.3316366.
https://​doi.org/​10.1145/​3313276.3316366

ہے [19] L. Grover and T. Rudolph. Creating superpositions that correspond to efficiently integrable probability distributions. arXiv preprint quant-ph/​0208112, 2002. 10.48550/​arXiv.quant-ph/​0208112.
https://​/​doi.org/​10.48550/​arXiv.quant-ph/​0208112
arXiv:quant-ph/0208112

ہے [20] J. Haah. Product decomposition of periodic functions in quantum signal processing. Quantum, 3: 190, 2019. 10.22331/​q-2019-10-07-190.
https:/​/​doi.org/​10.22331/​q-2019-10-07-190

ہے [21] A. W. Harrow, A. Hassidim, and S. Lloyd. Quantum algorithm for linear systems of equations. Physical review letters, 103: 150502, 2009. 10.1103/​PhysRevLett.103.150502.
https://​/​doi.org/​10.1103/​PhysRevLett.103.150502

ہے [22] A. Y. Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52: 1191, 1997. 10.1070/​RM1997v052n06ABEH002155.
https:/​/​doi.org/​10.1070/​RM1997v052n06ABEH002155

ہے [23] A. Y. Kitaev, A. Shen, M. N. Vyalyi, and M. N. Vyalyi. Classical and quantum computation. American Mathematical Soc., 2002. 10.1090/​gsm/​047.
https://​doi.org/​10.1090/​gsm/​047

ہے [24] L. Lin and Y. Tong. Optimal polynomial based quantum eigenstate filtering with application to solving quantum linear systems. Quantum, 4: 361, 2020. 10.22331/​q-2020-11-11-361.
https:/​/​doi.org/​10.22331/​q-2020-11-11-361

ہے [25] G. H. Low and I. L. Chuang. Optimal hamiltonian simulation by quantum signal processing. Physical review letters, 118: 010501, 2017. 10.1103/​PhysRevLett.118.010501.
https://​/​doi.org/​10.1103/​PhysRevLett.118.010501

ہے [26] A. Mahasinghe and J. Wang. Efficient quantum circuits for toeplitz and hankel matrices. Journal of Physics A: Mathematical and Theoretical, 49: 275301, 2016. 10.1088/​1751-8113/​49/​27/​275301.
https:/​/​doi.org/​10.1088/​1751-8113/​49/​27/​275301

ہے [27] S. McArdle, A. Gilyén, and M. Berta. Quantum state preparation without coherent arithmetic. arXiv preprint arXiv:2210.14892, 2022. 10.48550/​arXiv.2210.14892.
https://​doi.org/​10.48550/​arXiv.2210.14892
آر ایکس سی: 2210.14892

ہے [28] A. Montanaro and S. Pallister. Quantum algorithms and the finite element method. Physical Review A, 93: 032324, 2016. 10.1103/​PhysRevA.93.032324.
https://​/​doi.org/​10.1103/​PhysRevA.93.032324

ہے [29] Y. Nam, Y. Su, and D. Maslov. Approximate quantum fourier transform with o (n log (n)) t gates. NPJ Quantum Information, 6: 26, 2020. 10.1038/​s41534-020-0257-5.
https:/​/​doi.org/​10.1038/​s41534-020-0257-5

ہے [30] Q. T. Nguyen, B. T. Kiani, and S. Lloyd. Quantum algorithm for dense and full-rank kernels using hierarchical matrices. Quantum, 6: 876, 2022. 10.22331/​q-2022-12-13-876.
https:/​/​doi.org/​10.22331/​q-2022-12-13-876

ہے [31] M. A. Nielsen and I. Chuang. Quantum computation and quantum information. American Association of Physics Teachers, 2002. 10.1119/​1.1463744.
https://​doi.org/​10.1119/​1.1463744

ہے [32] E. G. Rieffel and W. H. Polak. Quantum computing: A gentle introduction. MIT Press, 2011. 10.1063/​PT.3.1442.
https://​doi.org/​10.1063/​PT.3.1442

ہے [33] S. Sachdeva, N. K. Vishnoi, et al. Faster algorithms via approximation theory. Foundations and Trends in Theoretical Computer Science, 9: 125–210, 2014. 10.1561/​0400000065.
https://​doi.org/​10.1561/​0400000065

ہے [34] E. M. Stein and T. S. Murphy. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 3. Princeton University Press, 1993. ISBN 9780691032160. URL https:/​/​press.princeton.edu/​books/​hardcover/​9780691032160/​harmonic-analysis-pms-43-volume-43.
https:/​/​press.princeton.edu/​books/​hardcover/​9780691032160/​harmonic-analysis-pms-43-volume-43

ہے [35] Y. Tong, D. An, N. Wiebe, and L. Lin. Fast inversion, preconditioned quantum linear system solvers, fast green’s-function computation, and fast evaluation of matrix functions. Physical Review A, 104, 2021. 10.1103/​PhysRevA.104.032422.
https://​/​doi.org/​10.1103/​PhysRevA.104.032422

ہے [36] R. Vale, T. M. D. Azevedo, I. Araújo, I. F. Araujo, and A. J. da Silva. Decomposition of multi-controlled special unitary single-qubit gates. arXiv preprint arXiv:2302.06377, 2023. 10.48550/​arXiv.2302.06377.
https://​doi.org/​10.48550/​arXiv.2302.06377
آر ایکس سی: 2302.06377

ہے [37] M. W. Wong. An Introduction to Pseudo-Differential Operators. World Scientific, 1999. 10.1142/​4047.
https://​doi.org/​10.1142/​4047

ہے [38] L. Ying. Stable factorization for phase factors of quantum signal processing. Quantum, 6: 842, 2022. 10.22331/​q-2022-10-20-842.
https:/​/​doi.org/​10.22331/​q-2022-10-20-842

کی طرف سے حوالہ دیا گیا

[1] David Jennings, Matteo Lostaglio, Sam Pallister, Andrew T Sornborger, and Yiğit Subaşı، "تفصیل چلانے کے اخراجات کے ساتھ موثر کوانٹم لکیری حل کرنے والا الگورتھم"، آر ایکس سی: 2305.11352, (2023).

مذکورہ بالا اقتباسات سے ہیں۔ SAO/NASA ADS (آخری بار کامیابی کے ساتھ 2023-06-02 12:49:58)۔ فہرست نامکمل ہو سکتی ہے کیونکہ تمام ناشرین مناسب اور مکمل حوالہ ڈیٹا فراہم نہیں کرتے ہیں۔

نہیں لا سکا کراس ریف کا حوالہ دیا گیا ڈیٹا آخری کوشش کے دوران 2023-06-02 12:49:57: Crossref سے 10.22331/q-2023-06-02-1031 کے لیے حوالہ کردہ ڈیٹا حاصل نہیں کیا جا سکا۔ یہ عام بات ہے اگر DOI حال ہی میں رجسٹر کیا گیا ہو۔

ٹائم اسٹیمپ:

سے زیادہ کوانٹم جرنل