อุณหภูมิควอนตัมที่สำคัญและความเป็นไปได้ในระบบการหมุน

โหนดต้นทาง: 1670424

เอเนส ไอบาร์1, อาร์ตูร์ นีซโกดา1,2, ซาฟูรา เอส. มีร์คาลาฟ3,4, มอร์แกน ดับเบิลยู. มิทเชลล์1,5, ดาเนียล เบเนดิกโต โอเรเนส1และ เอมิเลีย วิตคอฟสกา6

1ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
2คณะฟิสิกส์ มหาวิทยาลัยวอร์ซอ ul. ปาสเตรา 5, PL-02-093 วอร์ซอ, โปแลนด์
3ภาควิชาฟิสิกส์ มหาวิทยาลัยเตหะราน ตู้ปณ. 14395-547 เตหะราน อิหร่าน
4โรงเรียนนาโนวิทยาศาสตร์ สถาบันวิจัยวิทยาศาสตร์พื้นฐาน (IPM) ตู้ปณ. 19395-5531 เตหะราน อิหร่าน
5ICREA - Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
6สถาบันฟิสิกส์ PAS, Aleja Lotnikow 32/46, 02-668 Warszawa, โปแลนด์

พบบทความนี้ที่น่าสนใจหรือต้องการหารือ? Scite หรือแสดงความคิดเห็นใน SciRate.

นามธรรม

ในงานนี้ เราศึกษาการตรวจจับอุณหภูมิด้วยระบบที่มีความสัมพันธ์อย่างมากในขนาดจำกัดซึ่งแสดงการเปลี่ยนเฟสควอนตัม เราใช้แนวทางข้อมูลควอนตัมฟิชเชอร์ (QFI) เพื่อหาปริมาณความไวในการประมาณอุณหภูมิ และใช้กรอบงานการปรับขนาดที่มีขนาดจำกัดเพื่อเชื่อมโยงความไวนี้กับเลขชี้กำลังวิกฤตของระบบรอบจุดวิกฤต เราคำนวณ QFI เชิงตัวเลขรอบๆ จุดวิกฤตสำหรับระบบที่สามารถทดลองได้สองระบบ ได้แก่ คอนเดนเสทของสปิน-1 โบส-ไอน์สไตน์ และแบบจำลองสปินเชนไฮเซนเบิร์ก XX เมื่อมีสนามแม่เหล็กภายนอก ผลลัพธ์ของเรายืนยันคุณสมบัติการปรับขนาดที่มีขนาดจำกัดของ QFI นอกจากนี้เรายังหารือถึงสิ่งที่สังเกตได้ซึ่งสามารถเข้าถึงได้จากการทดลองซึ่ง (เกือบ) ทำให้ QFI อิ่มตัวที่จุดวิกฤติสำหรับทั้งสองระบบนี้

► ข้อมูล BibTeX

► ข้อมูลอ้างอิง

[1] คาร์ล ดับเบิลยู. เฮลสตรอม. ``การตรวจจับและการประมาณควอนตัมทฤษฎี'' วารสารฟิสิกส์สถิติ 1, 231–252 (1969)
https://doi.org/​10.1007/​BF01007479

[2] E. O. Göbel and U. Siegner. ``Quantum metrology: Foundation of Units and Measurements''. Wiley-VCH. (2015).
https://doi.org/10.1002/​9783527680887

[3] Samuel L. Braunstein and Carlton M. Caves. ``Statistical distance and the geometry of quantum states''. Physical Review Letters 72, 3439–3443 (1994).
https://doi.org/​10.1103/​PhysRevLett.72.3439

[4] M. M. Taddei, B. M. Escher, L. Davidovich, and R. L. de Matos Filho. ``Quantum Speed Limit for Physical Processes''. Physical Review Letters 110, 050402 (2013). arXiv:1209.0362.
https://doi.org/​10.1103/​PhysRevLett.110.050402
arXiv: 1209.0362

[5] Géza Tóth and Iagoba Apellaniz. ``Quantum metrology from a quantum information science perspective''. Journal of Physics A: Mathematical and Theoretical 47, 424006 (2014). arXiv:1405.4878.
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424006
arXiv: 1405.4878

[6] Luca Pezzé and Augusto Smerzi. ``Quantum theory of phase estimation'' (2014). arXiv:1411.5164.
arXiv: 1411.5164

[7] M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R. J. Sewell, and M. W. Mitchell. ``Interaction-based quantum metrology showing scaling beyond the Heisenberg limit''. Nature 471, 486–489 (2011). arXiv:1012.5787.
https://doi.org/10.1038/​nature09778
arXiv: 1012.5787

[8] Paolo Zanardi, Matteo G. A. Paris, and Lorenzo Campos Venuti. ``Quantum criticality as a resource for quantum estimation''. Physical Review A 78, 042105 (2008). arXiv:0708.1089.
https://doi.org/10.1103/​PhysRevA.78.042105
arXiv: 0708.1089

[9] Wai-Keong Mok, Kishor Bharti, Leong-Chuan Kwek, and Abolfazl Bayat. ``Optimal probes for global quantum thermometry''. Communications Physics 4, 62 (2021). arXiv:2010.14200.
https://doi.org/​10.1038/​s42005-021-00572-w
arXiv: 2010.14200

[10] Karol Gietka, Friederike Metz, Tim Keller, and Jing Li. ``Adiabatic critical quantum metrology cannot reach the Heisenberg limit even when shortcuts to adiabaticity are applied''. Quantum 5, 489 (2021). arXiv:2103.12939.
https:/​/​doi.org/​10.22331/​q-2021-07-01-489
arXiv: 2103.12939

[11] Yaoming Chu, Shaoliang Zhang, Baiyi Yu, and Jianming Cai. ``Dynamic Framework for Criticality-Enhanced Quantum Sensing''. Physical Review Letters 126, 010502 (2021). arXiv:2008.11381.
https://doi.org/​10.1103/​PhysRevLett.126.010502
arXiv: 2008.11381

[12] Louis Garbe, Matteo Bina, Arne Keller, Matteo G. A. Paris, and Simone Felicetti. ``Critical Quantum Metrology with a Finite-Component Quantum Phase Transition''. Physical Review Letters 124, 120504 (2020). arXiv:1910.00604.
https://doi.org/​10.1103/​PhysRevLett.124.120504
arXiv: 1910.00604

[13] Marek M. Rams, Piotr Sierant, Omyoti Dutta, Paweł Horodecki, and Jakub Zakrzewski. ``At the Limits of Criticality-Based Quantum Metrology: Apparent Super-Heisenberg Scaling Revisited''. Physical Review X 8, 021022 (2018). arXiv:1702.05660.
https://doi.org/10.1103/​PhysRevX.8.021022
arXiv: 1702.05660

[14] Safoura S. Mirkhalaf, Emilia Witkowska, and Luca Lepori. ``Supersensitive quantum sensor based on criticality in an antiferromagnetic spinor condensate''. Physical Review A 101, 043609 (2020). arXiv:1912.02418.
https://doi.org/10.1103/​PhysRevA.101.043609
arXiv: 1912.02418

[15] Safoura S. Mirkhalaf, Daniel Benedicto Orenes, Morgan W. Mitchell, and Emilia Witkowska. ``Criticality-enhanced quantum sensing in ferromagnetic bose-einstein condensates: Role of readout measurement and detection noise''. Physical Review A 103, 023317 (2021). arXiv:2010.13133.
https://doi.org/10.1103/​PhysRevA.103.023317
arXiv: 2010.13133

[16] Luca Pezzé, Andreas Trenkwalder, and Marco Fattori. ``Adiabatic Sensing Enhanced by Quantum Criticality'' (2019). arXiv:1906.01447.
arXiv: 1906.01447

[17] Giulio Salvatori, Antonio Mandarino, and Matteo G. A. Paris. ``Quantum metrology in Lipkin-Meshkov-Glick critical systems''. Physical Review A 90, 022111 (2014). arXiv:1406.5766.
https://doi.org/10.1103/​PhysRevA.90.022111
arXiv: 1406.5766

[18] Mankei Tsang. ``Quantum transition-edge detectors''. Physical Review A 88, 021801 (2013). arXiv:1305.1750.
https://doi.org/10.1103/​PhysRevA.88.021801
arXiv: 1305.1750

[19] Paolo Zanardi, H.T. Quan, Xiaoguang Wang, and C.P. Sun. ``Mixed-state fidelity and quantum criticality at finite temperature''. Physical Review A 75, 032109 (2007). arXiv:quant-ph/​0612008.
https://doi.org/10.1103/​PhysRevA.75.032109
arXiv:ปริมาณ-ph/0612008

[20] Wen-Long You, Ying-Wai Li, and Shi-Jian Gu. ``Fidelity, dynamic structure factor, and susceptibility in critical phenomena''. Physical Review E 76, 022101 (2007). arXiv:quant-ph/​0701077.
https://doi.org/10.1103/​PhysRevE.76.022101
arXiv:ปริมาณ-ph/0701077

[21] Philipp Hauke, Markus Heyl, Luca Tagliacozzo, and Peter Zoller. ``Measuring multipartite entanglement through dynamic susceptibilities''. Nature Physics 12, 778–782 (2016). arXiv:1509.01739.
https://doi.org/10.1038/​nphys3700
arXiv: 1509.01739

[22] Shi-Jian Gu. ``Fidelity approach to quantum phase transitions''. International Journal of Modern Physics B 24, 4371–4458 (2010). arXiv:0811.3127.
https://doi.org/10.1142/​s0217979210056335
arXiv: 0811.3127

[23] Yuto Ashida, Keiji Saito, and Masahito Ueda. ``Thermalization and Heating Dynamics in Open Generic Many-Body Systems''. Physical Review Letters 121 (2018). arXiv:1807.00019.
https://doi.org/10.1103/​physrevlett.121.170402
arXiv: 1807.00019

[24] Peter A. Ivanov. ``Quantum thermometry with trapped ions''. Optics Communications 436, 101–107 (2019). arXiv:1809.01451.
https://doi.org/10.1016/​j.optcom.2018.12.013
arXiv: 1809.01451

[25] Michael Vennettilli, Soutick Saha, Ushasi Roy, and Andrew Mugler. ``Precision of protein thermometry''. Physical Review Letters 127, 098102 (2021). arXiv:2012.02918.
https://doi.org/​10.1103/​PhysRevLett.127.098102
arXiv: 2012.02918

[26] M. A. Continentino. ``Quantum scaling in many-body systems''. World Scientific Publishing, Singapore. (2001).
https://doi.org/10.1017/​CBO9781316576854

[27] J. Cardy, editor. ``Finite-size scaling''. Elsevier Science Publisher, Amsterdam: North Holland. (1988). url: www.elsevier.com/​books/​finite-size-scaling/​cardy/​978-0-444-87109-1.
https:/​/​www.elsevier.com/​books/​finite-size-scaling/​cardy/​978-0-444-87109-1

[28] Massimo Campostrini, Andrea Pelissetto, and Ettore Vicari. ``Finite-size scaling at quantum transitions''. Physical Review B 89 (2014). arXiv:1401.0788.
https://doi.org/10.1103/​physrevb.89.094516
arXiv: 1401.0788

[29] Paolo Zanardi, Paolo Giorda, and Marco Cozzini. ``Information-Theoretic Differential Geometry of Quantum Phase Transitions''. Physical Review Letters 99, 100603 (2007).
https://doi.org/​10.1103/​PhysRevLett.99.100603

[30] Paolo Zanardi, Lorenzo Campos Venuti, and Paolo Giorda. ``Bures metric over thermal state manifolds and quantum criticality''. Physical Review A 76, 062318 (2007). arXiv:0707.2772.
https://doi.org/10.1103/​PhysRevA.76.062318
arXiv: 0707.2772

[31] Yi-Quan Zou, Ling-Na Wu, Qi Liu, Xin-Yu Luo, Shuai-Feng Guo, Jia-Hao Cao, Meng Khoon Tey, and Li You. ``Beating the classical precision limit with spin-1 dicke states of more than 10,000 atoms''. Proceedings of the National Academy of Sciences 115, 6381–6385 (2018). arXiv:1802.10288.
https://doi.org/10.1073/​pnas.1715105115
arXiv: 1802.10288

[32] Paul Niklas Jepsen, Jesse Amato-Grill, Ivana Dimitrova, Wen Wei Ho, Eugene Demler, and Wolfgang Ketterle. ``Spin transport in a tunable heisenberg model realized with ultracold atoms''. Nature 588, 403–407 (2020). arXiv:2005.09549.
https://doi.org/10.1038/​s41586-020-3033-y
arXiv: 2005.09549

[33] Michael Hohmann, Farina Kindermann, Tobias Lausch, Daniel Mayer, Felix Schmidt, and Artur Widera. ``Single-atom thermometer for ultracold gases''. Physical Review A 93, 043607 (2016). arXiv:1601.06067.
https://doi.org/10.1103/​PhysRevA.93.043607
arXiv: 1601.06067

[34] Quentin Bouton, Jens Nettersheim, Daniel Adam, Felix Schmidt, Daniel Mayer, Tobias Lausch, Eberhard Tiemann, and Artur Widera. ``Single-atom quantum probes for ultracold gases boosted by nonequilibrium spin dynamics''. Physical Review X 10, 011018 (2020).
https://doi.org/10.1103/​PhysRevX.10.011018

[35] A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, and W. Ketterle. ``Cooling Bose-Einstein condensates below 500 picokelvin''. Science 301, 1513–1515 (2003).
https://doi.org/10.1126/​science.1088827

[36] Ryan Olf, Fang Fang, G. Edward Marti, Andrew MacRae, and Dan M Stamper-Kurn. ``Thermometry and cooling of a Bose gas to 0.02 times the condensation temperature''. Nature Physics 11, 720–723 (2015). arXiv:1505.06196.
https://doi.org/10.1038/​nphys3408
arXiv: 1505.06196

[37] Matteo G.A. Paris. ``Achieving the Landau bound to precision of quantum thermometry in systems with vanishing gap''. Journal of Physics A: Mathematical and Theoretical 49, 03LT02 (2015). arXiv:1510.08111.
https:/​/​doi.org/​10.1088/​1751-8113/​49/​3/​03lt02
arXiv: 1510.08111

[38] Mohammad Mehboudi, Anna Sanpera, and Luis A Correa. ``Thermometry in the quantum regime: recent theoretical progress''. Journal of Physics A: Mathematical and Theoretical 52, 303001 (2019). arXiv:1811.03988.
https://doi.org/10.1088/​1751-8121/​ab2828
arXiv: 1811.03988

[39] Harald Cramér. ``Mathematical Methods of Statistics''. Princeton University Press. (1999). url: www.jstor.org/​stable/​j.ctt1bpm9r4.
https://​/​www.jstor.org/​stable/​j.ctt1bpm9r4

[40] S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar. ``Continuous quantum phase transitions''. Reviews of Modern Physics 69 (1997).
https://doi.org/​10.1103/​revmodphys.69.315

[41] Andrea Pelissetto and Ettore Vicari. ``Critical phenomena and renormalization-group theory''. Physics Reports 368, 549–727 (2002). arXiv:cond-mat/​0012164.
https:/​/​doi.org/​10.1016/​s0370-1573(02)00219-3
arXiv:cond-mat/0012164

[42] Michael E. Fisher and Michael N. Barber. ``Scaling Theory for Finite-Size Effects in the Critical Region''. Physical Review Letters 28, 1516–1519 (1972).
https://doi.org/​10.1103/​PhysRevLett.28.1516

[43] R. Botet and R. Jullien. ``Large-size critical behavior of infinitely coordinated systems''. Physical Review B 28, 3955–3967 (1983).
https://doi.org/​10.1103/​PhysRevB.28.3955

[44] Davide Rossini and Ettore Vicari. ``Ground-state fidelity at first-order quantum transitions''. Physical Review E 98 (2018). arXiv:1807.01674.
https://doi.org/10.1103/​PhysRevE.98.062137
arXiv: 1807.01674

[45] Mateusz Łącki and Bogdan Damski. ``Spatial Kibble–Zurek mechanism through susceptibilities: the inhomogeneous quantum Ising model case''. Journal of Statistical Mechanics: Theory and Experiment 2017, 103105 (2017). arXiv:1707.09884.
https:/​/​doi.org/​10.1088/​1742-5468/​aa8c20
arXiv: 1707.09884

[46] Luis A. Correa, Mohammad Mehboudi, Gerardo Adesso, and Anna Sanpera. ``Individual Quantum Probes for Optimal Thermometry''. Physical Review Letters 114, 220405 (2015). arXiv:1411.2437.
https://doi.org/​10.1103/​PhysRevLett.114.220405
arXiv: 1411.2437

[47] H.J. Lipkin, N. Meshkov, and A.J. Glick. ``Validity of many-body approximation methods for a solvable model: (i). Exact solutions and perturbation theory''. Nuclear Physics 62, 188–198 (1965).
https:/​/​doi.org/​10.1016/​0029-5582(65)90862-X

[48] Yuki Kawaguchi and Masahito Ueda. ``Spinor Bose–Einstein condensates''. Physics Reports 520, 253 – 381 (2012). arXiv:1001.2072.
https://doi.org/10.1016/​j.physrep.2012.07.005
arXiv: 1001.2072

[49] Dan M. Stamper-Kurn and Masahito Ueda. ``Spinor Bose gases: Symmetries, magnetism, and quantum dynamics''. Rev. Mod. Phys. 85, 1191–1244 (2013). arXiv:1205.1888.
https://doi.org/​10.1103/​RevModPhys.85.1191
arXiv: 1205.1888

[50] Daniel Benedicto Orenes, Anna U Kowalczyk, Emilia Witkowska, and Giovanni Barontini. ``Exploring the thermodynamics of spin-1 bose gases with synthetic magnetization''. New Journal of Physics 21, 043024 (2019). arXiv:1901.00427.
https:/​/​doi.org/​10.1088/​1367-2630/​ab14b4
arXiv: 1901.00427

[51] Ming Xue, Shuai Yin, and Li You. ``Universal driven critical dynamics across a quantum phase transition in ferromagnetic spinor atomic Bose-Einstein condensates''. Physical Review A 98, 013619 (2018). arXiv:1805.02174.
https://doi.org/10.1103/​PhysRevA.98.013619
arXiv: 1805.02174

[52] Sébastien Dusuel and Julien Vidal. ``Finite-Size Scaling Exponents of the Lipkin-Meshkov-Glick model''. Physical Review Letters 93, 237204 (2004).
https://doi.org/​10.1103/​PhysRevLett.93.237204

[53] Bertrand Evrard, An Qu, Jean Dalibard, and Fabrice Gerbier. ``Production and characterization of a fragmented spinor Bose-Einstein condensate'' (2020). arXiv:2010.15739.
arXiv: 2010.15739

[54] A. Langari. ``Quantum renormalization group of XYZ model in a transverse magnetic field''. Physical Review B 69 (2004).
https://doi.org/10.1103/​physrevb.69.100402

[55] Fabio Franchini. ``An Introduction to Integrable Techniques for One-Dimensional Quantum Systems''. Springer International Publishing. (2017). arXiv:1609.02100.
https:/​/​doi.org/​10.1007/​978-3-319-48487-7
arXiv: 1609.02100

[56] Ian Affleck and Masaki Oshikawa. ``Field-induced gap in Cu benzoate and other $s=frac{1}{2}$ antiferromagnetic chains''. Physical Review B 60, 1038–1056 (1999). arXiv:cond-mat/​9905002.
https://doi.org/​10.1103/​PhysRevB.60.1038
arXiv:cond-mat/9905002

[57] Hans-Jürgen Mikeska and Alexei K. Kolezhuk. ``One-dimensional magnetism''. Chapter 1, pages 1–83. Springer Berlin Heidelberg. Berlin, Heidelberg (2004).
https://doi.org/​10.1007/​BFb0119591

[58] Mohammad Mehboudi, Maria Moreno-Cardoner, Gabriele De Chiara, and Anna Sanpera. ``Thermometry precision in strongly correlated ultracold lattice gases''. New Journal of Physics 17, 055020 (2015). arXiv:1501.03095.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​5/​055020
arXiv: 1501.03095

[59] Michael Hartmann, Günter Mahler, and Ortwin Hess. ``Local versus global thermal states: Correlations and the existence of local temperatures''. Phys. Rev. E 70, 066148 (2004). arXiv:quant-ph/​0404164.
https://doi.org/10.1103/​PhysRevE.70.066148
arXiv:ปริมาณ-ph/0404164

[60] Michael Hartmann, Günter Mahler, and Ortwin Hess. ``Existence of Temperature on the Nanoscale''. Phys. Rev. Lett. 93, 080402 (2004). arXiv:quant-ph/​0312214.
https://doi.org/​10.1103/​PhysRevLett.93.080402
arXiv:ปริมาณ-ph/0312214

[61] Artur García-Saez, Alessandro Ferraro, and Antonio Acín. ``Local temperature in quantum thermal states''. Phys. Rev. A 79, 052340 (2009). arXiv:0808.0102.
https://doi.org/10.1103/​PhysRevA.79.052340
arXiv: 0808.0102

[62] Alessandro Ferraro, Artur García-Saez, and Antonio Acín. ``Intensive temperature and quantum correlations for refined quantum measurements''. EPL (Europhysics Letters) 98, 10009 (2012). arXiv:1102.5710.
https:/​/​doi.org/​10.1209/​0295-5075/​98/​10009
arXiv: 1102.5710

[63] M. Kliesch, C. Gogolin, M. J. Kastoryano, A. Riera, and J. Eisert. ``Locality of Temperature''. Phys. Rev. X 4, 031019 (2014). arXiv:1309.0816.
https://doi.org/10.1103/​PhysRevX.4.031019
arXiv: 1309.0816

[64] Senaida Hernández-Santana, Arnau Riera, Karen V. Hovhannisyan, Martí Perarnau-Llobet, Luca Tagliacozzo, and Antonio Acín. ``Locality of temperature in spin chains''. New Journal of Physics 17, 085007 (2015). arXiv:1506.04060.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​8/​085007
arXiv: 1506.04060

[65] Senaida Hernández-Santana, András Molnár, Christian Gogolin, J. Ignacio Cirac, and Antonio Acín. ``Locality of temperature and correlations in the presence of non-zero-temperature phase transitions''. New Journal of Physics 23, 073052 (2021). arXiv:2010.15256.
https:/​/​doi.org/​10.1088/​1367-2630/​ac14a9
arXiv: 2010.15256

[66] Silvana Palacios, Simon Coop, Pau Gomez, Thomas Vanderbruggen, Y. Natali Martinez de Escobar, Martijn Jasperse, and Morgan W. Mitchell. ``Multi-second magnetic coherence in a single domain spinor Bose–Einstein condensate''. New Journal of Physics 20, 053008 (2018). arXiv:1707.09607.
https:/​/​doi.org/​10.1088/​1367-2630/​aab2a0
arXiv: 1707.09607

[67] Pau Gomez, Ferran Martin, Chiara Mazzinghi, Daniel Benedicto Orenes, Silvana Palacios, and Morgan W. Mitchell. ``Bose-Einstein Condensate Comagnetometer''. Physical Review Letters 124, 170401 (2020). arXiv:1910.06642.
https://doi.org/​10.1103/​PhysRevLett.124.170401
arXiv: 1910.06642

[68] Kai Eckert, Oriol Romero-Isart, Mirta Rodriguez, Maciej Lewenstein, Eugene S Polzik, and Anna Sanpera. ``Quantum non-demolition detection of strongly correlated systems''. Nature Physics 4, 50–54 (2008). arXiv:0709.0527.
https://doi.org/10.1038/​nphys776
arXiv: 0709.0527

[69] Yink Loong Len, Tuvia Gefen, Alex Retzker, and Jan Kołodyński. ``Quantum metrology with imperfect measurements'' (2021). arXiv:2109.01160.
arXiv: 2109.01160

[70] Marcin Płodzień, Rafał Demkowicz-Dobrzańki, and Tomasz Sowiński. ``Few-fermion thermometry''. Physical Review A 97, 063619 (2018). arXiv:1804.04506.
https://doi.org/10.1103/​PhysRevA.97.063619
arXiv: 1804.04506

อ้างโดย

ไม่สามารถดึงข้อมูล Crossref อ้างโดย data ระหว่างความพยายามครั้งสุดท้าย 2022-09-19 13:59:32 น.: ไม่สามารถดึงข้อมูลที่อ้างถึงสำหรับ 10.22331 / q-2022-09-19-808 ​​จาก Crossref นี่เป็นเรื่องปกติหาก DOI ได้รับการจดทะเบียนเมื่อเร็วๆ นี้ บน อบต./นาซ่าโฆษณา ไม่พบข้อมูลอ้างอิงงาน (ความพยายามครั้งสุดท้าย 2022-09-19 13:59:32)

ประทับเวลา:

เพิ่มเติมจาก วารสารควอนตัม

QAOA เริ่มต้นอย่างอบอุ่นด้วยมิกเซอร์แบบกำหนดเองที่พิสูจน์ได้ว่ามาบรรจบกันและเอาชนะ Max-Cut ของ Goemans-Williamson ที่ความลึกของวงจรต่ำ

โหนดต้นทาง: 2906374
ประทับเวลา: กันยายน 26, 2023