Merilne motnje in ohranitveni zakoni v kvantni mehaniki

Merilne motnje in ohranitveni zakoni v kvantni mehaniki

Izvorno vozlišče: 2702190

M. Hamed Mohammady1,2, Takayuki Miyadera3in Leon Loveridge4

1QuIC, École Polytechnique de Bruxelles, CP 165/59, Université Libre de Bruxelles, 1050 Bruselj, Belgija
2RCQI, Inštitut za fiziko, Slovaška akademija znanosti, Dúbravská cesta 9, Bratislava 84511, Slovaška
3Oddelek za jedrsko tehniko, Univerza Kyoto, Nishikyo-ku, Kyoto 615-8540, Japonska
4Quantum Technology Group, Department of Science and Industry Systems, University of South-Eastern Norway, 3616 Kongsberg, Norveška

Se vam zdi ta članek zanimiv ali želite razpravljati? Zaslišite ali pustite komentar na SciRate.

Minimalizem

Merilne napake in motnje ob prisotnosti ohranitvenih zakonov so analizirane v splošnih operativnih terminih. Zagotavljamo nove kvantitativne meje, ki prikazujejo potrebne pogoje, pod katerimi je mogoče doseči natančne ali nemoteče meritve, pri čemer poudarjamo zanimivo medsebojno delovanje med nekompatibilnostjo, neostrino in skladnostjo. Od tu dobimo bistveno posplošitev izreka Wigner-Araki-Yanase (WAY). Naše ugotovitve so nadalje izpopolnjene z analizo nabora fiksnih točk merilnega kanala, katerega dodatna struktura je tukaj prvič opisana.

Kvantna meritev je fizikalni proces, ki izhaja iz interakcije med preiskovanim sistemom in merilnim aparatom. Medtem ko formalni okvir teorije kvantnega merjenja dovoljuje izvedbo kakršne koli meritve, so nekatere meritve morda izključene, če je interakcija omejena z ohranitvenim zakonom.

V prisotnosti aditivnih ohranjenih količin, kot so energija, naboj ali vrtilna količina, obstajajo omejitve tako pri natančnih kot pri nemotečih meritvah nekaterih opazovanih. Klasičen rezultat na to temo je izrek Wigner-Araki-Yanase (WAY), ki izvira iz $50$s/$60$s in navaja, da ko je merska interakcija enotna, so edine ostre opazke (ki ustrezajo samo- sosednji operaterji), ki dopuščajo natančne ali nemoteče meritve, so tisti, ki komutirajo z ohranjeno količino.

V tem prispevku posplošimo izrek WAY z obravnavo vprašanja natančnih ali nemotečih meritev (v prisotnosti ohranitvenih zakonov) za opazovalce, ki jih predstavljajo POVM (mere, ovrednotene s pozitivnim operaterjem), in interakcije meritev, ki jih predstavljajo kvantni kanali. Ugotavljamo, da za dosego natančnih ali nemotečih meritev za opazovalce, ki ne komutirajo z ohranjeno količino, opazovalci ne morejo biti ostri in mora biti merilna naprava pripravljena v stanju z veliko koherentnostjo ohranjene količine. V duhu prvotnega izreka WAY torej najdemo tako neuporaben rezultat, ki prepoveduje natančno merjenje in manipulacijo posameznih kvantnih objektov, kot pozitivno nasprotje, ki opredeljuje pogoje, pod katerimi je mogoče doseči dobre meritve.

► BibTeX podatki

► Reference

[1] P. Busch, G. Cassinelli in PJ Lahti, Najdeno. Phys. 20, 757 (1990).
https: / / doi.org/ 10.1007 / BF01889690

[2] M. Ozawa, Phys. Rev. A 67, 042105 (2003).
https: / / doi.org/ 10.1103 / PhysRevA.67.042105

[3] P. Busch, v Quantum Reality, Relativ. Vzročnost, zaključek epistemičnega kroga. (Springer, Dordrecht, 2009) str. 229–256.
https:/​/​doi.org/​10.1007/​978-1-4020-9107-0_13

[4] T. Heinosaari in MM Wolf, J. Math. Phys. 51, 092201 (2010).
https: / / doi.org/ 10.1063 / 1.3480658

[5] M. Tsang in CM Caves, Phys. Rev. Lett. 105, 123601 (2010).
https: / / doi.org/ 10.1103 / PhysRevLett.105.123601

[6] M. Tsang in CM Caves, Phys. Rev. X 2, 1 (2012).
https: / / doi.org/ 10.1103 / PhysRevX.2.031016

[7] LA Rozema, A. Darabi, DH Mahler, A. Hayat, Y. Soudagar in AM Steinberg, Phys. Rev. Lett. 109, 100404 (2012).
https: / / doi.org/ 10.1103 / PhysRevLett.109.100404

[8] JP Groen, D. Ristè, L. Tornberg, J. Cramer, PC de Groot, T. Picot, G. Johansson in L. DiCarlo, Phys. Rev. Lett. 111, 090506 (2013).
https: / / doi.org/ 10.1103 / PhysRevLett.111.090506

[9] M. Hatridge, S. Shankar, M. Mirrahimi, F. Schackert, K. Geerlings, T. Brecht, KM Sliwa, B. Abdo, L. Frunzio, SM Girvin, RJ Schoelkopf in MH Devoret, Znanost (80-. ). 339, 178 (2013).
https: / / doi.org/ 10.1126 / znanost.1226897

[10] P. Busch, P. Lahti in RF Werner, Phys. Rev. Lett. 111, 160405 (2013).
https: / / doi.org/ 10.1103 / PhysRevLett.111.160405

[11] P. Busch, P. Lahti in RF Werner, Rev. Mod. Phys. 86, 1261 (2014).
https: / / doi.org/ 10.1103 / RevModPhys.86.1261

[12] F. Kaneda, S.-Y. Baek, M. Ozawa in K. Edamatsu, Phys. Rev. Lett. 112, 020402 (2014).
https: / / doi.org/ 10.1103 / PhysRevLett.112.020402

[13] MS Blok, C. Bonato, ML Markham, DJ Twitchen, VV Dobrovitski in R. Hanson, Nat. Phys. 10, 189 (2014).
https: / / doi.org/ 10.1038 / nphys2881

[14] T. Shitara, Y. Kuramochi in M. Ueda, Phys. Rev. A 93, 032134 (2016).
https: / / doi.org/ 10.1103 / PhysRevA.93.032134

[15] CB Møller, RA Thomas, G. Vasilakis, E. Zeuthen, Y. Tsaturyan, M. Balabas, K. Jensen, A. Schliesser, K. Hammerer in ES Polzik, Nature 547, 191 (2017).
https: / / doi.org/ 10.1038 / nature22980

[16] I. Hamamura in T. Miyadera, J. Math. Phys. 60, 082103 (2019).
https: / / doi.org/ 10.1063 / 1.5109446

[17] C. Carmeli, T. Heinosaari, T. Miyadera in A. Toigo, Najdeno. Phys. 49, 492 (2019).
https:/​/​doi.org/​10.1007/​s10701-019-00255-1

[18] K.-D. Wu, E. Bäumer, J.-F. Tang, KV Hovhannisyan, M. Perarnau-Llobet, G.-Y. Xiang, C.-F. Li in G.-C. Guo, Phys. Rev. Lett. 125, 210401 (2020).
https: / / doi.org/ 10.1103 / physrevlett.125.210401

[19] GM D'Ariano, P. Perinotti in A. Tosini, Quantum 4, 363 (2020).
https:/​/​doi.org/​10.22331/​q-2020-11-16-363

[20] AC Ipsen, Najdeno. Phys. 52, 20 (2022).
https: / / doi.org/ 10.1007 / s10701-021-00534-w

[21] T. Heinosaari, T. Miyadera in M. Ziman, J. Phys. Matematika. Teor. 49, 123001 (2016).
https:/​/​doi.org/​10.1088/​1751-8113/​49/​12/​123001

[22] O. Gühne, E. Haapasalo, T. Kraft, J.-P. Pellonpää, in R. Uola, Rev. Mod. Phys. 95, 011003 (2023).
https: / / doi.org/ 10.1103 / RevModPhys.95.011003

[23] EP Wigner, Zeitschrift für Phys. Hadron. Nucl. 133, 101 (1952).
https: / / doi.org/ 10.1007 / BF01948686

[24] P. Busch, (2010), arXiv:1012.4372.
arXiv: 1012.4372

[25] H. Araki in MM Yanase, Phys. Rev. 120, 622 (1960).
https: / / doi.org/ 10.1103 / PhysRev.120.622

[26] L. Loveridge in P. Busch, Eur. Phys. J. D 62, 297 (2011).
https: / / doi.org/ 10.1140 / epjd / e2011-10714-3

[27] T. Miyadera in H. Imai, Phys. Rev. A 74, 024101 (2006).
https: / / doi.org/ 10.1103 / PhysRevA.74.024101

[28] G. Kimura, B. Meister in M. Ozawa, Phys. Rev. A 78, 032106 (2008).
https: / / doi.org/ 10.1103 / PhysRevA.78.032106

[29] P. Busch in L. Loveridge, Phys. Rev. Lett. 106, 110406 ​​(2011).
https: / / doi.org/ 10.1103 / PhysRevLett.106.110406

[30] P. Busch in LD Loveridge, v Symmetries Groups Contemp. Phys. (WORLD SCIENTIFIC, 2013) str. 587–592.
https: / / doi.org/ 10.1142 / 9789814518550_0083

[31] A. Łuczak, Open Syst. Inf. Dyn. 23, 1 (2016).
https: / / doi.org/ 10.1142 / S123016121650013X

[32] M. Tukiainen, Phys. Rev. A 95, 012127 (2017).
https: / / doi.org/ 10.1103 / PhysRevA.95.012127

[33] H. Tajima in H. Nagaoka, (2019), arXiv:1909.02904.
arXiv: 1909.02904

[34] S. Sołtan, M. Frączak, W. Belzig in A. Bednorz, Phys. Rev. Res. 3, 013247 (2021).
https: / / doi.org/ 10.1103 / PhysRevResearch.3.013247

[35] M. Ozawa, Phys. Rev. Lett. 89, 3 (2002a).
https: / / doi.org/ 10.1103 / PhysRevLett.89.057902

[36] T. Karasawa in M. Ozawa, Phys. Rev. A 75, 032324 (2007).
https: / / doi.org/ 10.1103 / PhysRevA.75.032324

[37] T. Karasawa, J. Gea-Banacloche in M. Ozawa, J. Phys. Matematika. Teor. 42, 225303 (2009).
https:/​/​doi.org/​10.1088/​1751-8113/​42/​22/​225303

[38] M. Ahmadi, D. Jennings in T. Rudolph, New J. Phys. 15, 013057 (2013).
https:/​/​doi.org/​10.1088/​1367-2630/​15/​1/​013057

[39] J. Åberg, Phys. Rev. Lett. 113, 150402 (2014).
https: / / doi.org/ 10.1103 / PhysRevLett.113.150402

[40] H. Tajima, N. Shiraishi in K. Saito, Phys. Rev. Res. 2, 043374 (2020).
https: / / doi.org/ 10.1103 / PhysRevResearch.2.043374

[41] L. Loveridge, T. Miyadera in P. Busch, Found. Phys. 48, 135 (2018).
https:/​/​doi.org/​10.1007/​s10701-018-0138-3

[42] L. Loveridge, J. Phys. konf. Ser. 1638, 012009 (2020).
https:/​/​doi.org/​10.1088/​1742-6596/​1638/​1/​012009

[43] N. Gisin in E. Zambrini Cruzeiro, Ann. Phys. 530, 1700388 (2018).
https: / / doi.org/ 10.1002 / andp.201700388

[44] M. Navascués in S. Popescu, Phys. Rev. Lett. 112, 140502 (2014).
https: / / doi.org/ 10.1103 / PhysRevLett.112.140502

[45] MH Mohammady in J. Anders, New J. Phys. 19, 113026 (2017).
https:/​/​doi.org/​10.1088/​1367-2630/​aa8ba1

[46] MH Mohammady in A. Romito, Quantum 3, 175 (2019).
https:/​/​doi.org/​10.22331/​q-2019-08-19-175

[47] G. Chiribella, Y. Yang in R. Renner, Phys. Rev. X 11, 021014 (2021).
https: / / doi.org/ 10.1103 / PhysRevX.11.021014

[48] MH Mohammady, Phys. Rev. A 104, 062202 (2021a).
https: / / doi.org/ 10.1103 / PhysRevA.104.062202

[49] P. Busch, P. Lahti, J.-P. Pellonpää in K. Ylinen, Kvantne meritve, teoretična in matematična fizika (Springer International Publishing, Cham, 2016).
https:/​/​doi.org/​10.1007/​978-3-319-43389-9

[50] P. Busch, M. Grabowski in PJ Lahti, Operational Quantum Physics, Lecture Notes in Physics Monographs, Vol. 31 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1995).
https:/​/​doi.org/​10.1007/​978-3-540-49239-9

[51] P. Busch, PJ Lahti in Peter Mittelstaedt, The Quantum Theory of Measurement, Lecture Notes in Physics Monographs, Vol. 2 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1996).
https:/​/​doi.org/​10.1007/​978-3-540-37205-9

[52] T. Heinosaari in M. Ziman, Matematični jezik kvantne teorije (Cambridge University Press, Cambridge, 2011).
https: / / doi.org/ 10.1017 / CBO9781139031103

[53] B. Janssens, Lett. matematika Phys. 107, 1557 (2017).
https: / / doi.org/ 10.1007 / s11005-017-0953-z

[54] O. Bratteli in DW Robinson, Operatorske algebre in kvantna statistična mehanika 1 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1987).
https:/​/​doi.org/​10.1007/​978-3-662-02520-8

[55] O. Bratteli, PET Jorgensen, A. Kishimoto in RF Werner, J. Oper. Theory 43, 97 (2000).
https: / / www.jstor.org/ hlev / 24715231

[56] EB Davies in JT Lewis, Commun. matematika Phys. 17, 239 (1970).
https: / / doi.org/ 10.1007 / BF01647093

[57] M. Ozawa, Phys. Rev. A 62, 062101 (2000).
https: / / doi.org/ 10.1103 / PhysRevA.62.062101

[58] M. Ozawa, Phys. Rev. A 63, 032109 (2001).
https: / / doi.org/ 10.1103 / PhysRevA.63.032109

[59] J.-P. Pellonpää, J. Phys. Matematika. Teor. 46, 025302 (2013a).
https:/​/​doi.org/​10.1088/​1751-8113/​46/​2/​025302

[60] J.-P. Pellonpää, J. Phys. Matematika. Teor. 46, 025303 (2013b).
https:/​/​doi.org/​10.1088/​1751-8113/​46/​2/​025303

[61] G. Lüders, Ann. Phys. 518, 663 (2006).
https: / / doi.org/ 10.1002 / andp.20065180904

[62] M. Ozawa, J. Math. Phys. 25, 79 (1984).
https: / / doi.org/ 10.1063 / 1.526000

[63] P. Busch in J. Singh, Phys. Lett. A 249, 10 (1998).
https:/​/​doi.org/​10.1016/​S0375-9601(98)00704-X

[64] P. Busch, M. Grabowski in PJ Lahti, Najdeno. Phys. 25, 1239 (1995b).
https: / / doi.org/ 10.1007 / BF02055331

[65] PJ Lahti, P. Busch in P. Mittelstaedt, J. Math. Phys. 32, 2770 (1991).
https: / / doi.org/ 10.1063 / 1.529504

[66] MM Yanase, Phys. Rev. 123, 666 (1961).
https: / / doi.org/ 10.1103 / PhysRev.123.666

[67] M. Ozawa, Phys. Rev. Lett. 88, 050402 (2002b).
https: / / doi.org/ 10.1103 / PhysRevLett.88.050402

[68] I. Marvian in RW Spekkens, Nat. Komun. 5, 3821 (2014).
https: / / doi.org/ 10.1038 / ncomms4821

[69] C. Cı̂rstoiu, K. Korzekwa in D. Jennings, Phys. Rev. X 10, 041035 (2020).
https: / / doi.org/ 10.1103 / PhysRevX.10.041035

[70] D. Petz in C. Ghinea, Quantum Probab. Relat. Vrh. (World Scientific, Singapur, 2011) str. 261–281.
https: / / doi.org/ 10.1142 / 9789814338745_0015

[71] A. Streltsov, G. Adesso in MB Plenio, Rev. Mod. Phys. 89, 041003 (2017).
https: / / doi.org/ 10.1103 / RevModPhys.89.041003

[72] R. Takagi, Sci. Rep. 9, 14562 (2019).
https: / / doi.org/ 10.1038 / s41598-019-50279-w

[73] I. Marvian, Phys. Rev. Lett. 129, 190502 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.129.190502

[74] G. Tóth in D. Petz, Phys. Rev. A 87, 032324 (2013).
https: / / doi.org/ 10.1103 / PhysRevA.87.032324

[75] S. Yu, (2013), arXiv:1302.5311.
arXiv: 1302.5311

[76] L. Weihua in W. Junde, J. Phys. Matematika. Teor. 43, 395206 (2010).
https:/​/​doi.org/​10.1088/​1751-8113/​43/​39/​395206

[77] B. Prunaru, J. Phys. Matematika. Teor. 44, 185203 (2011).
https:/​/​doi.org/​10.1088/​1751-8113/​44/​18/​185203

[78] A. Arias, A. Gheondea in S. Gudder, J. Math. Phys. 43, 5872 (2002).
https: / / doi.org/ 10.1063 / 1.1519669

[79] L. Weihua in W. Junde, J. Math. Phys. 50, 103531 (2009).
https: / / doi.org/ 10.1063 / 1.3253574

[80] GM D'Ariano, P. Perinotti in M. Sedlák, J. Math. Phys. 52, 082202 (2011).
https: / / doi.org/ 10.1063 / 1.3610676

[81] MH Mohammady, Phys. Rev. A 103, 042214 (2021b).
https: / / doi.org/ 10.1103 / PhysRevA.103.042214

[82] V. Pata, Fiksni izreki in aplikacije, UNITEXT, Vol. 116 (Springer International Publishing, Cham, 2019).
https:/​/​doi.org/​10.1007/​978-3-030-19670-7

[83] G. Pisier, Uvod v teorijo prostora operatorjev (Cambridge University Press, 2003).
https: / / doi.org/ 10.1017 / CBO9781107360235

[84] Y. Kuramochi in H. Tajima, (2022), arXiv:2208.13494.
arXiv: 2208.13494

[85] RV Kadison, Ann. matematika 56, 494 (1952).
https: / / doi.org/ 10.2307 / 1969657

[86] M.-D. Choi, Illinois J. Math. 18, 565 (1974).
https: / / doi.org/ 10.1215 / ijm / 1256051007

[87] WF Stinespring, Proc. Am. matematika Soc. 6, 211 (1955).
https: / / doi.org/ 10.2307 / 2032342

[88] T. Miyadera in H. Imai, Phys. Rev. A 78, 052119 (2008).
https: / / doi.org/ 10.1103 / PhysRevA.78.052119

[89] T. Miyadera, L. Loveridge in P. Busch, J. Phys. Matematika. Teor. 49, 185301 (2016).
https:/​/​doi.org/​10.1088/​1751-8113/​49/​18/​185301

[90] K. Kraus, stanja, učinki in operacije, temeljni pojmi kvantne teorije, uredili K. Kraus, A. Böhm, JD Dollard in WH Wootters, Lecture Notes in Physics, Vol. 190 (Springer Berlin Heidelberg, Berlin, Heidelberg, 1983).
https:/​/​doi.org/​10.1007/​3-540-12732-1

[91] P. Lahti, Int. J. Theor. Phys. 42, 893 (2003).
https: / / doi.org/ 10.1023 / A: 1025406103210

[92] J.-P. Pellonpää, J. Phys. Matematika. Teor. 47, 052002 (2014).
https:/​/​doi.org/​10.1088/​1751-8113/​47/​5/​052002

[93] S. Luo in Q. Zhang, Theor. matematika Phys. 151, 529 (2007).
https:/​/​doi.org/​10.1007/​s11232-007-0039-7

[94] GM D'Ariano, PL Presti in P. Perinotti, J. Phys. A. Matematika. Gen. 38, 5979 (2005).
https:/​/​doi.org/​10.1088/​0305-4470/​38/​26/​010

[95] Jame CA Fuchs in CM, Open Syst. Inf. Dyn. 3, 345 (1995).
https: / / doi.org/ 10.1007 / BF02228997

[96] H. Barnum, CM Caves, CA Fuchs, R. Jozsa in B. Schumacher, Phys. Rev. Lett. 76, 2818 (1996).
https: / / doi.org/ 10.1103 / PhysRevLett.76.2818

Navedel

[1] Yui Kuramochi in Hiroyasu Tajima, "Wigner-Araki-Yanasejev izrek za zvezne in neomejene ohranjene opazovalke", arXiv: 2208.13494, (2022).

[2] M. Hamed Mohammady in Takayuki Miyadera, "Kvantne meritve, omejene s tretjim zakonom termodinamike", arXiv: 2209.06024, (2022).

[3] M. Hamed Mohammady, “Termodinamično proste kvantne meritve”, arXiv: 2205.10847, (2022).

[4] Lauritz van Luijk, Reinhard F. Werner in Henrik Wilming, "Kovariantna kataliza zahteva korelacije in dobri kvantni referenčni okviri se malo poslabšajo", arXiv: 2301.09877, (2023).

[5] M. Hamed Mohammady, “Termodinamično proste kvantne meritve”, Časopis za fiziko A Mathematical General 55 50, 505304 (2022).

[6] M. Hamed Mohammady in Takayuki Miyadera, "Kvantne meritve, omejene s tretjim zakonom termodinamike", Fizični pregled A 107 2, 022406 (2023).

Zgornji citati so iz SAO / NASA ADS (zadnjič posodobljeno 2023-06-05 13:40:12). Seznam je morda nepopoln, saj vsi založniki ne dajejo ustreznih in popolnih podatkov o citiranju.

Pridobitve ni bilo mogoče Crossref citirani podatki med zadnjim poskusom 2023-06-05 13:40:10: Citiranih podatkov za 10.22331 / q-2023-06-05-1033 od Crossrefa ni bilo mogoče pridobiti. To je normalno, če je bil DOI registriran pred kratkim.

Časovni žig:

Več od Quantum Journal