Nanotechnology Now - Press Release: Chloride ions from seawater eyed as possible lithium replacement in batteries of the future

Nanotechnology Now – Press Release: Chloride ions from seawater eyed as possible lithium replacement in batteries of the future

Source Node: 2827197

Home > Press > Chloride ions from seawater eyed as possible lithium replacement in batteries of the future

Xiaowei Teng
Xiaowei Teng

Abstract:
Sodium, Potassium and zinc have all been promising contenders for lithium’s place in rechargeable batteries of the future, but researchers at Worcester Polytechnic Institute (WPI) have added an unusual and more abundant competitor to the mix: chloride, the richest negatively charged ions in seawater.

Chloride ions from seawater eyed as possible lithium replacement in batteries of the future

Worcester, MA | Posted on August 11th, 2023

Xiaowei Teng, the James H. Manning professor of Chemical Engineering at WPI, has discovered a new redox chemistry empowered by chloride ions for the development of seawater green batteries.

Modern lithium-ion batteries used in various applications, including electric vehicles, can be problematic for grid storage, given their high cost and reliance on critical materials, such as cobalt, nickel, and lithium, as well as their limited geographical availability. For example, six countries own over 85% of lithium reserves on the land.

Teng and his research collaborators--Heath Turner, professor of Chemical and Biological Engineering at the University of Alabama, and Lihua Zhang, Milinda Abeykoon, Gihan Kwon, Daniel Olds, all research scientists at Brookhaven National Laboratory in New York--went beyond the limits of current green battery technology by leveraging chloride ions to empower redox chemistry of iron oxide battery materials.

Teng and his colleagues reported on the new battery chemistry in “Chloride-Insertion Enhances the Electrochemical Oxidation of Iron Hydroxide Double Layer Hydroxide into Oxyhydroxide in Alkaline Iron Batteries”, a paper published in the American Chemical Society journal Chemistry of Materials and highlighted in the supplementary front cover.

This study revealed that chloride ion insertion into Fe(OH)2 layered double hydroxide formed a Green Rust intermediate crystalline material, which assisted a one-charge transfer Fe(OH)2/FeOOH conversion reaction and improved cycling stability. This new iron redox chemistry was discovered and examined in the WPI lab. Teng and his graduate student Sathya Narayanan Jagadeesan, who is the leading author of the article, further traveled to Department of Energy User Facilities at Brookhaven National Laboratory to conduct experiments to validate the results using operandosynchrotron X-ray diffraction and high-resolution elementary mapping.

Teng and his WPI team made an aqueous battery, a small lab-scale prototype that operated in the water-based electrolyte, using electrodes made mostly from abundant elements such as iron oxides and hydroxides. While the team hasn’t calculated the cost, the use of earth-abundant materials should tip the scale in their favor, Teng says. The U.S. produces over 15 million tons of scrap iron wastes that are not recycled each year, many of which exist in the form of rust. Therefore, the reported rechargeable alkaline iron battery chemistry helps repurpose the iron rust waste materials for modern energy storage.

The research was funded by the National Science Foundation and the Department of Energy (DOE).

####

For more information, please click here

Contacts:
Steven Foskett
Worcester Polytechnic Institute
Cell: 5088689413

Copyright © Worcester Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ARTICLE TITLE

Related News Press

News and information

Femtosecond laser technique births "dancing microrobots": USTC's breakthrough in multi-material microfabrication August 11th, 2023

USTC achieved dynamic imaging of interfacial electrochemistry August 11th, 2023

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Govt.-Legislation/Regulation/Funding/Policy

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Discovery may lead to terahertz technology for quantum sensing: Metal oxide’s properties could enable wide range of terahertz frequency photonics July 21st, 2023

The present and future of computing get a boost from new research July 21st, 2023

Unveiling the quantum dance: Experiments reveal nexus of vibrational and electronic dynamics: Coupling of electronic and nuclear dynamics revealed in molecules with ultrafast lasers and X-rays July 21st, 2023

Possible Futures

USTC achieved dynamic imaging of interfacial electrochemistry August 11th, 2023

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Discoveries

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Announcements

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Ribbons of graphene push the material’s potential: A new technique developed at Columbia offers a systematic evaluation of twist angle and strain in layered 2D materials August 11th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Tattoo technique transfers gold nanopatterns onto live cells August 11th, 2023

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Graphene-based Carbocatalysts: Synthesis, Properties, and Applications—Beyond Boundaries June 9th, 2023

Channeling mechanical energy in a preferred direction April 14th, 2023

Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023

Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023

Time Stamp:

More from Nanotechnology Now Recent News