Antikeha sidumissait on COVID-19 viiruse variantide puhul konserveeritud: struktuurne ilmutus võib mõjutada terapeutilist sihtmärki kõigis SARS-CoV-2 variantides

Allikasõlm: 806205

Avaleht > press > Antibody binding-site conserved across COVID-19 virus variants: The structural revelation could have implications as a therapeutic target in all SARS-CoV-2 variants

A Penn State research team found that the N protein on SARS-CoV-2 is conserved across all SARS-related pandemic coronaviruses (top, from left: SARS-CoV-2, civet, SARS-CoV, MERS). The protein differs from other coronaviruses, such as those that cause the common cold (bottom, from left: OC43, HKU1, NL63 and 229E). CREDIT Kelly Lab/Penn State
A Penn State research team found that the N protein on SARS-CoV-2 is conserved across all SARS-related pandemic coronaviruses (top, from left: SARS-CoV-2, civet, SARS-CoV, MERS). The protein differs from other coronaviruses, such as those that cause the common cold (bottom, from left: OC43, HKU1, NL63 and 229E). CREDIT Kelly Lab/Penn State

Abstraktne:
A tiny protein of SARS-CoV-2, the coronavirus that gives rise to COVID-19, may have big implications for future treatments, according to a team of Penn State researchers.

Antikeha sidumissait on COVID-19 viiruse variantide puhul konserveeritud: struktuurne ilmutus võib mõjutada terapeutilist sihtmärki kõigis SARS-CoV-2 variantides


University Park, PA | Posted on April 9th, 2021

Using a novel toolkit of approaches, the scientists uncovered the first full structure of the Nucleocapsid (N) protein and discovered how antibodies from COVID-19 patients interact with that protein. They also determined that the structure appears similar across many coronaviruses, including recent COVID-19 variants — making it an ideal target for advanced treatments and vaccines. They reported their results in Nanoscale.

“We discovered new features about the N protein structure that could have large implications in antibody testing and the long-term effects of all SARS-related pandemic viruses,” said Deb Kelly, professor of biomedical engineering (BME), Huck Chair in Molecular Biophysics and director of the Penn State Center for Structural Oncology, who led the research. “Since it appears that the N protein is conserved across the variants of SARS-CoV-2 and SARS-CoV-1, therapeutics designed to target the N protein could potentially help knock out the harsher or lasting symptoms some people experience.”

Most of the diagnostic tests and available vaccines for COVID-19 were designed based on a larger SARS-CoV-2 protein — the Spike protein — where the virus attaches to healthy cells to begin the invasion process.

The Pfizer/BioNTech and Moderna vaccines were designed to help recipients produce antibodies that protect against the Spike protein. However, Kelly said, the Spike protein can easily mutate, resulting in the variants that have emerged in the United Kingdom, South Africa, Brazil and across the United States.

Unlike the outer Spike protein, the N protein is encased in the virus, protected from environmental pressures that cause the Spike protein to change. In the blood, however, the N protein floats freely after it is released from infected cells. The free-roaming protein causes a strong immune response, leading to the production of protective antibodies. Most antibody-testing kits look for the N protein to determine if a person was previously infected with the virus — as opposed to diagnostic tests that look for the Spike protein to determine if a person is currently infected.

“Everyone is looking at the Spike protein, and there are fewer studies being performed on the N protein,” said Michael Casasanta, first author on the paper and a postdoctoral fellow in the Kelly laboratory. “There was this gap. We saw an opportunity — we had the ideas and the resources to see what the N protein looks like.”

Initially, the researchers examined the N protein sequences from humans, as well as different animals thought to be potential sources of the pandemic, such as bats, civets and pangolins. They all looked similar but distinctly different, according to Casasanta.

“The sequences can predict the structure of each of these N proteins, but you can’t get all the information from a prediction — you need to see the actual 3D structure,” Casasanta said. “We converged the technology to see a new thing in a new way.”

The researchers used an electron microscope to image both the N protein and the site on the N protein where antibodies bind, using serum from COVID-19 patients, and developed a 3D computer model of the structure. They found that the antibody binding site remained the same across every sample, making it a potential target to treat people with any of the known COVID-19 variants.

“If a therapeutic can be designed to target the N protein binding site, it might help reduce the inflammation and other lasting immune responses to COVID-19, especially in COVID long haulers,” Kelly said, referring to people who experience COVID-19 symptoms for six weeks or longer.

The team procured purified N proteins, meaning the samples only contained N proteins, from RayBiotech Life and applied them to microchips developed in partnership with Protochips Inc. The microchips are made of silicon nitride, as opposed to a more traditional porous carbon, and they contain thin wells with special coatings that attract the N proteins to their surface. Once prepared, the samples were flash frozen and examined through cryo-electron microscopy.

Kelly credited her team’s unique combination of microchips, thinner ice samples and Penn State’s advanced electron microscopes outfitted with state-of-the-art detectors, customized from the company Direct Electron, for delivering the highest-resolution visualization of low-weight molecules from SARS-CoV-2 so far.

“The technology combined resulted in a unique finding,” Kelly said. “Before, it was like trying to look at something frozen in the middle of the lake. Now, we’re looking at it through an ice cube. We can see smaller entities with many more details and higher accuracy.”

# # #

Casasanta and Kelly are both also affiliated with Penn State’s Materials Research Institute (MRI). Co-authors include G.M. Jonaid, BME and Bioinformatics and Genomics Graduate Program in Penn State’s Huck Institutes of the Life Sciences; Liam Kaylor and Maria J. Solares, BME and Molecular, Cellular, and Integrative Biosciences Graduate Program in the Huck Institutes of the Life Sciences; William Y. Luqiu, MRI and Department of Electrical and Computer Engineering at Duke University; Mariah Schroen, MRI; William J. Dearnaley, BME and MRI; Jared Wilson, RayBiotech Life; and Madeline J. Dukes, Protochips Inc.

The National Cancer Institute of the National Institutes of Health and the Center for Structural Oncology in the Huck Institutes of the Life Sciences at Penn State funded this work.

####

Lisateabe saamiseks klõpsake nuppu siin

Kontaktid:
Megan Lakatos
814-865-5544

@penn_state

Autoriõigus © Penn State

Kui teil on kommentaar, palun Saada sõnum meile.

Sisu täpsuse eest vastutavad ainuüksi uudisteväljaannete väljaandjad, mitte 7th Wave, Inc. või Nanotechnology Now.

Järjehoidja:
maitsev Digg Newsvine Google Yahoo reddit Magnoliacom Furl Facebook

Lingid

SEOTUD AJAKIRI:

Seotud uudised Press

Uudised ja teave

Avastamine võib aidata pikendada elektroonikaseadmete eluiga: uuringud võivad viia elektroonika väljatöötamiseni parema vastupidavusega Aprill 9th, 2021

Grafeen: kõik on kontrolli all: uurimisrühm demonstreerib kvantmaterjali juhtimismehhanismi Aprill 9th, 2021

Energia ülekandmine DNA struktuuridega ühendatud kulla nanoosakeste kaudu Aprill 9th, 2021

Uus ajuhaiguste aine: mRNA Aprill 9th, 2021

Valitsus-õigusaktid/määrused/rahastamine/poliitika

Paremad lahendused vesiniku valmistamiseks võivad asuda just pinnal Aprill 9th, 2021

3D-disain viib esimeste stabiilsete ja tugevate isekoostuvate 1D nanografeenjuhtmeteni Aprill 6th, 2021

Aukudest koosnevad qubitid võivad olla nipp kiiremate ja suuremate kvantarvutite ehitamiseks: elektronaugud võivad olla lahendus töökiiruse/sidususe kompromissile Aprill 2nd, 2021

Plasmoniga seotud kulla nanoosakesed, mis on kasulikud termilise ajaloo tuvastamiseks Aprill 1st, 2021

Võimalikud tulevikud

Avastamine võib aidata pikendada elektroonikaseadmete eluiga: uuringud võivad viia elektroonika väljatöötamiseni parema vastupidavusega Aprill 9th, 2021

Grafeen: kõik on kontrolli all: uurimisrühm demonstreerib kvantmaterjali juhtimismehhanismi Aprill 9th, 2021

Energia ülekandmine DNA struktuuridega ühendatud kulla nanoosakeste kaudu Aprill 9th, 2021

Uus ajuhaiguste aine: mRNA Aprill 9th, 2021

Nanomeditsiin

Avastamine võib aidata pikendada elektroonikaseadmete eluiga: uuringud võivad viia elektroonika väljatöötamiseni parema vastupidavusega Aprill 9th, 2021

Energia ülekandmine DNA struktuuridega ühendatud kulla nanoosakeste kaudu Aprill 9th, 2021

Uus ajuhaiguste aine: mRNA Aprill 9th, 2021

Kirigami-stiilis valmistamine võib võimaldada uusi 3D-nanostruktuure Aprill 2nd, 2021

Avastused

Avastamine võib aidata pikendada elektroonikaseadmete eluiga: uuringud võivad viia elektroonika väljatöötamiseni parema vastupidavusega Aprill 9th, 2021

Grafeen: kõik on kontrolli all: uurimisrühm demonstreerib kvantmaterjali juhtimismehhanismi Aprill 9th, 2021

Energia ülekandmine DNA struktuuridega ühendatud kulla nanoosakeste kaudu Aprill 9th, 2021

Uus ajuhaiguste aine: mRNA Aprill 9th, 2021

Teated

Avastamine võib aidata pikendada elektroonikaseadmete eluiga: uuringud võivad viia elektroonika väljatöötamiseni parema vastupidavusega Aprill 9th, 2021

Grafeen: kõik on kontrolli all: uurimisrühm demonstreerib kvantmaterjali juhtimismehhanismi Aprill 9th, 2021

Energia ülekandmine DNA struktuuridega ühendatud kulla nanoosakeste kaudu Aprill 9th, 2021

Uus ajuhaiguste aine: mRNA Aprill 9th, 2021

Intervjuud/raamatuarvustused/esseed/aruanded/podcastid/ajakirjad/valged lehed/plakatid

Avastamine võib aidata pikendada elektroonikaseadmete eluiga: uuringud võivad viia elektroonika väljatöötamiseni parema vastupidavusega Aprill 9th, 2021

Grafeen: kõik on kontrolli all: uurimisrühm demonstreerib kvantmaterjali juhtimismehhanismi Aprill 9th, 2021

Energia ülekandmine DNA struktuuridega ühendatud kulla nanoosakeste kaudu Aprill 9th, 2021

Uus ajuhaiguste aine: mRNA Aprill 9th, 2021

Nanobiotehnoloogia

Energia ülekandmine DNA struktuuridega ühendatud kulla nanoosakeste kaudu Aprill 9th, 2021

Uus ajuhaiguste aine: mRNA Aprill 9th, 2021

DNA – metallist topeltheeliks: üheahelaline DNA supramolekulaarse matriitsina kõrgelt organiseeritud pallaadiumi nanojuhtmete jaoks Märts 26th, 2021

Tugevate 3D-nanomaterjalide ehitamine DNA abil: Columbia Engineers kasutavad DNA nanotehnoloogiat, et luua väga vastupidavaid sünteetilisi nanoosakestel põhinevaid materjale, mida saab töödelda tavapäraste nanotootmismeetoditega Märts 19th, 2021

Allikas: http://www.nanotech-now.com/news.cgi?story_id=56641

Ajatempel:

Veel alates Nanotehnoloogia nüüd