سچدیو-ی-کیتایو ماڈل کی عالمگیر توازن کی حرکیات

سچدیو-ی-کیتایو ماڈل کی عالمگیر توازن کی حرکیات

ماخذ نوڈ: 2674948

Soumik Bandyopadhyay1, Philipp Uhrich1, Alessio Paviglianiti1,2، اور فلپ ہاک1

1Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, Trento, I-38123, Italy
2International School for Advanced Studies (SISSA), via Bonomea 265, 34136 Trieste, Italy

اس کاغذ کو دلچسپ لگتا ہے یا اس پر بات کرنا چاہتے ہیں؟ SciRate پر تبصرہ کریں یا چھوڑیں۔.

خلاصہ

Equilibrium quantum many-body systems in the vicinity of phase transitions generically manifest universality. In contrast, limited knowledge has been gained on possible universal characteristics in the non-equilibrium evolution of systems in quantum critical phases. In this context, universality is generically attributed to the insensitivity of observables to the microscopic system parameters and initial conditions. Here, we present such a universal feature in the equilibration dynamics of the Sachdev-Ye-Kitaev (SYK) Hamiltonian – a paradigmatic system of disordered, all-to-all interacting fermions that has been designed as a phenomenological description of quantum critical regions. We drive the system far away from equilibrium by performing a global quench, and track how its ensemble average relaxes to a steady state. Employing state-of-the-art numerical simulations for the exact evolution, we reveal that the disorder-averaged evolution of few-body observables, including the quantum Fisher information and low-order moments of local operators, exhibit within numerical resolution a universal equilibration process. Under a straightforward rescaling, data that correspond to different initial states collapse onto a universal curve, which can be well approximated by a Gaussian throughout large parts of the evolution. To reveal the physics behind this process, we formulate a general theoretical framework based on the Novikov–Furutsu theorem. This framework extracts the disorder-averaged dynamics of a many-body system as an effective dissipative evolution, and can have applications beyond this work. The exact non-Markovian evolution of the SYK ensemble is very well captured by Bourret–Markov approximations, which contrary to common lore become justified thanks to the extreme chaoticity of the system, and universality is revealed in a spectral analysis of the corresponding Liouvillian.

The modern description of matter hinges on the concept of universality. According to this principle, a system’s microscopic details become unimportant, allowing one to describe the behavior of vastly different systems by just a few parameters. For equilibrium matter, this has a rigorous theoretical basis in the form of the minimization of the free energy. Yet, despite decade-long efforts, the situation is much less firm for quantum systems out of equilibrium. Here, we provide a piece to the puzzle of out-of-equilibrium universality. Our focus is on a paradigm model for a particularly fascinating type of quantum matter called “holographic.” Such matter is currently attracting great interest because it draws deep connections to well-known theories of gravity and because it is among the most chaotic systems possible in nature.

We find numerically that the dynamics of relevant physical observables becomes fully independent of microscopic details that define the initial conditions. To explain this unexpected universal behavior, we develop a theoretical framework that describes the isolated quantum model under study through methods that are typical of open systems that interact with an environment. This framework elucidates connections between the extreme chaotic behavior of the holographic quantum model and dissipative quantum systems.

This study opens an array of follow-up questions: In which other systems can we expect similar universal behavior? Can we extend the dissipative framework to other models? And is it possible to observe these effects in a real system in Nature or in the laboratory?

► BibTeX ڈیٹا

► حوالہ جات

ہے [1] J. von Neumann. Proof of the ergodic theorem and the H-theorem in quantum mechanics. Z. Phys., 57: 30–70, 1929. English translation by R. Tumulka, Eur. Phys. J. H 35, 201 (2010) DOI: 10.1140/​epjh/​e2010-00008-5.
https://​/​doi.org/​10.1140/​epjh/​e2010-00008-5

ہے [2] A. Polkovnikov, K. Sengupta, A. Silva, and M. Vengalattore. Colloquium: Nonequilibrium dynamics of closed interacting quantum systems. Rev. Mod. Phys., 83: 863–883, 2011. 10.1103/​RevModPhys.83.863.
https://​/​doi.org/​10.1103/​RevModPhys.83.863

ہے [3] J. Eisert, M. Friesdorf, and C. Gogolin. Quantum many-body systems out of equilibrium. Nat. Phys., 11 (2): 124–130, 2015. 10.1038/​nphys3215.
https://​doi.org/​10.1038/​nphys3215

ہے [4] C. Gogolin and J. Eisert. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Rep. Prog. Phys., 79 (5): 056001, 2016. 10.1088/​0034-4885/​79/​5/​056001.
https:/​/​doi.org/​10.1088/​0034-4885/​79/​5/​056001

ہے [5] M. Lewenstein, A. Sanpera, and V. Ahufinger. Ultracold atoms in optical lattices: simulating Quantum Many-Body systems. Oxford University Press, 2012. 10.1093/​acprof:oso/​9780199573127.001.0001.
https://​/​doi.org/​10.1093/​acprof:oso/​9780199573127.001.0001

ہے [6] I. Bloch, J. Dalibard, and S. Nascimbène. Quantum simulations with ultracold quantum gases. Nat. Phys., 8 (4): 267–276, 2012. 10.1038/​nphys2259.
https://​doi.org/​10.1038/​nphys2259

ہے [7] R. Blatt and C. F. Roos. Quantum simulations with trapped ions. Nat. Phys., 8 (4): 277–284, 2012. 10.1038/​nphys2252.
https://​doi.org/​10.1038/​nphys2252

ہے [8] P. Hauke, F. M. Cucchietti, L. Tagliacozzo, I. Deutsch, and M. Lewenstein. Can one trust quantum simulators? Rep. Prog. Phys., 75 (8): 082401, 2012. 10.1088/​0034-4885/​75/​8/​082401.
https:/​/​doi.org/​10.1088/​0034-4885/​75/​8/​082401

ہے [9] I. M. Georgescu, S. Ashhab, and F. Nori. Quantum simulation. Rev. Mod. Phys., 86: 153–185, 2014. 10.1103/​RevModPhys.86.153.
https://​/​doi.org/​10.1103/​RevModPhys.86.153

ہے [10] C. Gross and I. Bloch. Quantum simulations with ultracold atoms in optical lattices. Science, 357 (6355): 995, 2017. 10.1126/​science.aal3837.
https://​doi.org/​10.1126/​science.aal3837

ہے [11] E. Altman et al. Quantum Simulators: Architectures and Opportunities. PRX Quantum, 2: 017003, 2021. 10.1103/​PRXQuantum.2.017003.
https://​/​doi.org/​10.1103/​PRXQuantum.2.017003

ہے [12] N. Strohmaier, D. Greif, R. Jördens, L. Tarruell, H. Moritz, T. Esslinger, R. Sensarma, D. Pekker, E. Altman, and E. Demler. Observation of Elastic Doublon Decay in the Fermi–Hubbard Model. Phys. Rev. Lett., 104: 080401, 2010. 10.1103/​PhysRevLett.104.080401.
https://​/​doi.org/​10.1103/​PhysRevLett.104.080401

ہے [13] S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert, and I. Bloch. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas. Nat. Phys., 8 (4): 325–330, 2012. 10.1038/​nphys2232.
https://​doi.org/​10.1038/​nphys2232

ہے [14] M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. Adu Smith, E. Demler, and J. Schmiedmayer. Relaxation and Prethermalization in an Isolated Quantum System. Science, 337 (6100): 1318–1322, 2012. 10.1126/​science.1224953.
https://​doi.org/​10.1126/​science.1224953

ہے [15] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and J. Schmiedmayer. Local emergence of thermal correlations in an isolated quantum many-body system. Nat. Phys., 9 (10): 640–643, 2013. 10.1038/​nphys2739.
https://​doi.org/​10.1038/​nphys2739

ہے [16] P. Jurcevic, B. P. Lanyon, P. Hauke, C. Hempel, P. Zoller, R. Blatt, and C. F. Roos. Quasiparticle engineering and entanglement propagation in a quantum many-body system. Nature, 511 (7508): 202–205, 2014. 10.1038/​nature13461.
https://​doi.org/​10.1038/​nature13461

ہے [17] J. Smith, A. Lee, P. Richerme, B. Neyenhuis, P. W. Hess, P. Hauke, M. Heyl, D. A. Huse, and C. Monroe. Many-body localization in a quantum simulator with programmable random disorder. Nat. Phys., 12 (10): 907–911, 2016. 10.1038/​nphys3783.
https://​doi.org/​10.1038/​nphys3783

ہے [18] A. M. Kaufman, M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, P. M. Preiss, and M. Greiner. Quantum thermalization through entanglement in an isolated many-body system. Science, 353: 794–800, 2016. 10.1126/​science.aaf6725.
https://​doi.org/​10.1126/​science.aaf6725

ہے [19] C. Neill et al. Ergodic dynamics and thermalization in an isolated quantum system. Nat. Phys., 12 (11): 1037–1041, 2016. 10.1038/​nphys3830.
https://​doi.org/​10.1038/​nphys3830

ہے [20] G. Clos, D. Porras, U. Warring, and T. Schaetz. Time-Resolved Observation of Thermalization in an Isolated Quantum System. Phys. Rev. Lett., 117: 170401, 2016. 10.1103/​PhysRevLett.117.170401.
https://​/​doi.org/​10.1103/​PhysRevLett.117.170401

ہے [21] B. Neyenhuis, J. Zhang, P. W. Hess, J. Smith, A. C. Lee, P. Richerme, Z.-X. Gong, A. V. Gorshkov, and C. Monroe. Observation of prethermalization in long-range interacting spin chains. Sci. Adv., 3 (8): e1700672, 2017. 10.1126/​sciadv.1700672.
https://​doi.org/​10.1126/​sciadv.1700672

ہے [22] I.-K. Liu, S. Donadello, G. Lamporesi, G. Ferrari, S.-C. Gou, F. Dalfovo, and N. P. Proukakis. Dynamical equilibration across a quenched phase transition in a trapped quantum gas. Commun. Phys., 1 (1): 24, 2018. 10.1038/​s42005-018-0023-6.
https:/​/​doi.org/​10.1038/​s42005-018-0023-6

ہے [23] Y. Tang, W. Kao, K.-Y. Li, S. Seo, K. Mallayya, M. Rigol, S. Gopalakrishnan, and B. L. Lev. Thermalization near Integrability in a Dipolar Quantum Newton’s Cradle. Phys. Rev. X, 8: 021030, 2018. 10.1103/​PhysRevX.8.021030.
https://​/​doi.org/​10.1103/​PhysRevX.8.021030

ہے [24] H. Kim, Y. Park, K. Kim, H.-S. Sim, and J. Ahn. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators. Phys. Rev. Lett., 120: 180502, 2018. 10.1103/​PhysRevLett.120.180502.
https://​/​doi.org/​10.1103/​PhysRevLett.120.180502

ہے [25] M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linnemann, C.-M. Schmied, J. Berges, T. Gasenzer, and M. K. Oberthaler. Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature, 563 (7730): 217–220, 2018. 10.1038/​s41586-018-0659-0.
https:/​/​doi.org/​10.1038/​s41586-018-0659-0

ہے [26] Z.-Y. Zhou, G.-X. Su, J. C. Halimeh, R. Ott, H. Sun, P. Hauke, B. Yang, Z.-S. Yuan, J. Berges, and J.-W. Pan. Thermalization dynamics of a gauge theory on a quantum simulator. Science, 377 (6603): 311–314, 2022. 10.1126/​science.abl6277.
https://​doi.org/​10.1126/​science.abl6277

ہے [27] H. Nishimori and G. Ortiz. Elements of Phase Transitions and Critical Phenomena. Oxford University Press, 2010. 10.1093/​acprof:oso/​9780199577224.001.0001.
https://​/​doi.org/​10.1093/​acprof:oso/​9780199577224.001.0001

ہے [28] S. Sachdev. Quantum Phase Transitions. Cambridge University Press, 2 edition, 2011. 10.1017/​CBO9780511973765.
https://​doi.org/​10.1017/​CBO9780511973765

ہے [29] J. M. Deutsch. Quantum statistical mechanics in a closed system. Phys. Rev. A, 43: 2046–2049, 1991. 10.1103/​PhysRevA.43.2046.
https://​/​doi.org/​10.1103/​PhysRevA.43.2046

ہے [30] M. Srednicki. Chaos and quantum thermalization. Phys. Rev. E, 50: 888–901, 1994. 10.1103/​PhysRevE.50.888.
https://​/​doi.org/​10.1103/​PhysRevE.50.888

ہے [31] M. Rigol, V. Dunjko, and M. Olshanii. Thermalization and its mechanism for generic isolated quantum systems. Nature, 452 (7189): 854–858, 2008. 10.1038/​nature06838.
https://​doi.org/​10.1038/​nature06838

ہے [32] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol. From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics. Adv. Phys., 65 (3): 239–362, 2016. 10.1080/​00018732.2016.1198134.
https://​doi.org/​10.1080/​00018732.2016.1198134

ہے [33] N. Lashkari, D. Stanford, M. Hastings, T. Osborne, and P. Hayden. Towards the fast scrambling conjecture. J. High Energ. Phys., 2013 (4): 22, 2013. 10.1007/​JHEP04(2013)022.
https://​doi.org/​10.1007/​JHEP04(2013)022

ہے [34] P. Hosur, X.-L. Qi, D. A. Roberts, and B. Yoshida. Chaos in quantum channels. J. High Energ. Phys., 2016 (2): 4, 2016. 10.1007/​JHEP02(2016)004.
https://​doi.org/​10.1007/​JHEP02(2016)004

ہے [35] A. Bohrdt, C. B. Mendl, M. Endres, and M. Knap. Scrambling and thermalization in a diffusive quantum many-body system. New J. Phys., 19 (6): 063001, 2017. 10.1088/​1367-2630/​aa719b.
https://​doi.org/​10.1088/​1367-2630/​aa719b

ہے [36] E. Iyoda and T. Sagawa. Scrambling of quantum information in quantum many-body systems. Phys. Rev. A, 97: 042330, 2018. 10.1103/​PhysRevA.97.042330.
https://​/​doi.org/​10.1103/​PhysRevA.97.042330

ہے [37] G. Bentsen, T. Hashizume, A. S. Buyskikh, E. J. Davis, A. J. Daley, S. S. Gubser, and M. Schleier-Smith. Treelike Interactions and Fast Scrambling with Cold Atoms. Phys. Rev. Lett., 123: 130601, 2019a. 10.1103/​PhysRevLett.123.130601.
https://​/​doi.org/​10.1103/​PhysRevLett.123.130601

ہے [38] D. A. Roberts and D. Stanford. Diagnosing Chaos Using Four-Point Functions in Two-Dimensional Conformal Field Theory. Phys. Rev. Lett., 115: 131603, 2015. 10.1103/​PhysRevLett.115.131603.
https://​/​doi.org/​10.1103/​PhysRevLett.115.131603

ہے [39] P. Hayden and J. Preskill. Black holes as mirrors: quantum information in random subsystems. J. High Energ. Phys., 2007 (09): 120–120, 2007. 10.1088/​1126-6708/​2007/​09/​120.
https:/​/​doi.org/​10.1088/​1126-6708/​2007/​09/​120

ہے [40] Y. Sekino and L. Susskind. Fast scramblers. J. High Energ. Phys., 2008 (10): 065–065, 2008. 10.1088/​1126-6708/​2008/​10/​065.
https:/​/​doi.org/​10.1088/​1126-6708/​2008/​10/​065

ہے [41] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R. Blatt, and C. F. Roos. Quantum Information Scrambling in a Trapped-Ion Quantum Simulator with Tunable Range Interactions. Phys. Rev. Lett., 124: 240505, 2020. 10.1103/​PhysRevLett.124.240505.
https://​/​doi.org/​10.1103/​PhysRevLett.124.240505

ہے [42] M. S. Blok, V. V. Ramasesh, T. Schuster, K. O’Brien, J. M. Kreikebaum, D. Dahlen, A. Morvan, B. Yoshida, N. Y. Yao, and I. Siddiqi. Quantum information scrambling on a superconducting qutrit processor. Phys. Rev. X, 11: 021010, 2021. 10.1103/​PhysRevX.11.021010.
https://​/​doi.org/​10.1103/​PhysRevX.11.021010

ہے [43] Q. Zhu et al. Observation of Thermalization and Information Scrambling in a Superconducting Quantum Processor. Phys. Rev. Lett., 128: 160502, 2022. 10.1103/​PhysRevLett.128.160502.
https://​/​doi.org/​10.1103/​PhysRevLett.128.160502

ہے [44] S. Sachdev and J. Ye. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett., 70: 3339–3342, 1993. 10.1103/​PhysRevLett.70.3339.
https://​/​doi.org/​10.1103/​PhysRevLett.70.3339

ہے [45] S. Sachdev. Bekenstein–Hawking Entropy and Strange Metals. Phys. Rev. X, 5: 041025, 2015. 10.1103/​PhysRevX.5.041025.
https://​/​doi.org/​10.1103/​PhysRevX.5.041025

ہے [46] A. Kitaev. A simple model of quantum holography. Talks given at “Entanglement in Strongly-Correlated Quantum Matter,” (Part 1, Part 2), KITP (2015).
https:/​/​online.kitp.ucsb.edu/​online/​entangled15/​kitaev/​

ہے [47] J. Maldacena and D. Stanford. Remarks on the Sachdev-Ye-Kitaev model. Phys. Rev. D, 94: 106002, 2016. 10.1103/​PhysRevD.94.106002.
https://​/​doi.org/​10.1103/​PhysRevD.94.106002

ہے [48] Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky. Notes on the complex Sachdev-Ye-Kitaev model. J. High Energ. Phys., 2020 (2): 157, 2020. 10.1007/​JHEP02(2020)157.
https://​doi.org/​10.1007/​JHEP02(2020)157

ہے [49] S. Sachdev. Strange metals and the AdS/​CFT correspondence. J. Stat. Mech., 2010 (11): P11022, 2010a. 10.1088/​1742-5468/​2010/​11/​p11022.
https:/​/​doi.org/​10.1088/​1742-5468/​2010/​11/​p11022

ہے [50] X.-Y. Song, C.-M. Jian, and L. Balents. Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models. Phys. Rev. Lett., 119: 216601, 2017. 10.1103/​PhysRevLett.119.216601.
https://​/​doi.org/​10.1103/​PhysRevLett.119.216601

ہے [51] S. Sachdev. Holographic Metals and the Fractionalized Fermi Liquid. Phys. Rev. Lett., 105: 151602, 2010b. 10.1103/​PhysRevLett.105.151602.
https://​/​doi.org/​10.1103/​PhysRevLett.105.151602

ہے [52] R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev. Thermoelectric transport in disordered metals without quasiparticles: The Sachdev-Ye-Kitaev models and holography. Phys. Rev. B, 95: 155131, 2017. 10.1103/​PhysRevB.95.155131.
https://​/​doi.org/​10.1103/​PhysRevB.95.155131

ہے [53] A. Kitaev and S. J. Suh. The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual. J. High Energ. Phys., 2018 (5): 183, 2018. 10.1007/​JHEP05(2018)183.
https://​doi.org/​10.1007/​JHEP05(2018)183

ہے [54] S. Sachdev. Universal low temperature theory of charged black holes with AdS2 horizons. J. Math. Phys., 60 (5): 052303, 2019. 10.1063/​1.5092726.
https://​doi.org/​10.1063/​1.5092726

ہے [55] J. Maldacena, S. H. Shenker, and D. Stanford. A bound on chaos. J. High Energ. Phys., 2016 (8): 106, 2016. 10.1007/​JHEP08(2016)106.
https://​doi.org/​10.1007/​JHEP08(2016)106

ہے [56] A. M. García-García and J. J. M. Verbaarschot. Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model. Phys. Rev. D, 94: 126010, 2016. 10.1103/​PhysRevD.94.126010.
https://​/​doi.org/​10.1103/​PhysRevD.94.126010

ہے [57] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka. Black holes and random matrices. J. High Energ. Phys., 2017 (5): 118, 2017. 10.1007/​JHEP05(2017)118.
https://​doi.org/​10.1007/​JHEP05(2017)118

ہے [58] A. M. García-García, B. Loureiro, A. Romero-Bermúdez, and M. Tezuka. Chaotic-Integrable Transition in the Sachdev-Ye-Kitaev Model. Phys. Rev. Lett., 120: 241603, 2018. 10.1103/​PhysRevLett.120.241603.
https://​/​doi.org/​10.1103/​PhysRevLett.120.241603

ہے [59] T. Numasawa. Late time quantum chaos of pure states in random matrices and in the Sachdev-Ye-Kitaev model. Phys. Rev. D, 100: 126017, 2019. 10.1103/​PhysRevD.100.126017.
https://​/​doi.org/​10.1103/​PhysRevD.100.126017

ہے [60] M. Winer, S.-K. Jian, and B. Swingle. Exponential Ramp in the Quadratic Sachdev-Ye-Kitaev Model. Phys. Rev. Lett., 125: 250602, 2020. 10.1103/​PhysRevLett.125.250602.
https://​/​doi.org/​10.1103/​PhysRevLett.125.250602

ہے [61] B. Kobrin, Z. Yang, G. D. Kahanamoku-Meyer, C. T. Olund, J. E. Moore, D. Stanford, and N. Y. Yao. Many-Body Chaos in the Sachdev-Ye-Kitaev Model. Phys. Rev. Lett., 126: 030602, 2021. 10.1103/​PhysRevLett.126.030602.
https://​/​doi.org/​10.1103/​PhysRevLett.126.030602

ہے [62] J. M. Magán. Black holes as random particles: entanglement dynamics in infinite range and matrix models. J. High Energ. Phys., 2016 (8): 81, 2016. 10.1007/​JHEP08(2016)081.
https://​doi.org/​10.1007/​JHEP08(2016)081

ہے [63] J. Sonner and M. Vielma. Eigenstate thermalization in the Sachdev-Ye-Kitaev model. J. High Energ. Phys., 2017 (11): 149, 2017. 10.1007/​JHEP11(2017)149.
https://​doi.org/​10.1007/​JHEP11(2017)149

ہے [64] A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg. Quantum quench of the Sachdev-Ye-Kitaev model. Phys. Rev. B, 96: 205123, 2017. 10.1103/​PhysRevB.96.205123.
https://​/​doi.org/​10.1103/​PhysRevB.96.205123

ہے [65] J. C. Louw and S. Kehrein. Thermalization of many many-body interacting Sachdev-Ye-Kitaev models. Phys. Rev. B, 105: 075117, 2022. 10.1103/​PhysRevB.105.075117.
https://​/​doi.org/​10.1103/​PhysRevB.105.075117

ہے [66] S. M. Davidson, D. Sels, and A. Polkovnikov. Semiclassical approach to dynamics of interacting fermions. Ann. Phys., 384: 128–141, 2017. 10.1016/​j.aop.2017.07.003.
https:/​/​doi.org/​10.1016/​j.aop.2017.07.003.

ہے [67] A. Haldar, P. Haldar, S. Bera, I. Mandal, and S. Banerjee. Quench, thermalization, and residual entropy across a non-Fermi liquid to Fermi liquid transition. Phys. Rev. Res., 2: 013307, 2020. 10.1103/​PhysRevResearch.2.013307.
https://​/​doi.org/​10.1103/​PhysRevResearch.2.013307

ہے [68] T. Samui and N. Sorokhaibam. Thermalization in different phases of charged SYK model. J. High Energ. Phys., 2021 (4): 157, 2021. 10.1007/​JHEP04(2021)157.
https://​doi.org/​10.1007/​JHEP04(2021)157

ہے [69] Matteo Carrega, Joonho Kim, and Dario Rosa. Unveiling operator growth using spin correlation functions. Entropy, 23 (5): 587, 2021. 10.3390/​e23050587.
https://​doi.org/​10.3390/​e23050587

ہے [70] A. Larzul and M. Schiró. Quenches and (pre)thermalization in a mixed Sachdev-Ye-Kitaev model. Phys. Rev. B, 105: 045105, 2022. 10.1103/​PhysRevB.105.045105.
https://​/​doi.org/​10.1103/​PhysRevB.105.045105

ہے [71] L. García-Álvarez, I. L. Egusquiza, L. Lamata, A. del Campo, J. Sonner, and E. Solano. Digital Quantum Simulation of Minimal $mathrm{AdS}/​mathrm{CFT}$. Phys. Rev. Lett., 119: 040501, 2017. 10.1103/​PhysRevLett.119.040501.
https://​/​doi.org/​10.1103/​PhysRevLett.119.040501

ہے [72] D. I. Pikulin and M. Franz. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System. Phys. Rev. X, 7: 031006, 2017. 10.1103/​PhysRevX.7.031006.
https://​/​doi.org/​10.1103/​PhysRevX.7.031006

ہے [73] A. Chew, A. Essin, and J. Alicea. Approximating the Sachdev-Ye-Kitaev model with Majorana wires. Phys. Rev. B, 96: 121119, 2017. 10.1103/​PhysRevB.96.121119.
https://​/​doi.org/​10.1103/​PhysRevB.96.121119

ہے [74] A. Chen, R. Ilan, F. de Juan, D. I. Pikulin, and M. Franz. Quantum Holography in a Graphene Flake with an Irregular Boundary. Phys. Rev. Lett., 121: 036403, 2018. 10.1103/​PhysRevLett.121.036403.
https://​/​doi.org/​10.1103/​PhysRevLett.121.036403

ہے [75] I. Danshita, M. Hanada, and M. Tezuka. Creating and probing the Sachdev–Ye–Kitaev model with ultracold gases: Towards experimental studies of quantum gravity. Progr. Theor. Exp. Phys., 2017, 2017. 10.1093/​ptep/​ptx108.
https://​doi.org/​10.1093/​ptep/​ptx108

ہے [76] C. Wei and T. A. Sedrakyan. Optical lattice platform for the Sachdev-Ye-Kitaev model. Phys. Rev. A, 103: 013323, 2021. 10.1103/​PhysRevA.103.013323.
https://​/​doi.org/​10.1103/​PhysRevA.103.013323

ہے [77] M. Marcuzzi, E. Levi, S. Diehl, J. P. Garrahan, and I. Lesanovsky. Universal Nonequilibrium Properties of Dissipative Rydberg Gases. Phys. Rev. Lett., 113: 210401, 2014. 10.1103/​PhysRevLett.113.210401.
https://​/​doi.org/​10.1103/​PhysRevLett.113.210401

ہے [78] M. Marcuzzi, E. Levi, W. Li, J. P. Garrahan, B. Olmos, and I. Lesanovsky. Non-equilibrium universality in the dynamics of dissipative cold atomic gases. New J. Phys., 17 (7): 072003, 2015. 10.1088/​1367-2630/​17/​7/​072003.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​7/​072003

ہے [79] D. Trapin and M. Heyl. Constructing effective free energies for dynamical quantum phase transitions in the transverse-field Ising chain. Phys. Rev. B, 97: 174303, 2018. 10.1103/​PhysRevB.97.174303.
https://​/​doi.org/​10.1103/​PhysRevB.97.174303

ہے [80] M. Heyl. Dynamical quantum phase transitions: a review. Rep. Prog. Phys., 81 (5): 054001, 2018. 10.1088/​1361-6633/​aaaf9a.
https://​doi.org/​10.1088/​1361-6633/​aaaf9a

ہے [81] Erne, S. and Bücker, R. and Gasenzer, T. and Berges, J. and Schmiedmayer, J. Universal dynamics in an isolated one-dimensional bose gas far from equilibrium. Nature, 563 (7730): 225–229, 2018. 10.1038/​s41586-018-0667-0.
https:/​/​doi.org/​10.1038/​s41586-018-0667-0

ہے [82] J. Surace, L. Tagliacozzo, and E. Tonni. Operator content of entanglement spectra in the transverse field Ising chain after global quenches. Phys. Rev. B, 101: 241107, 2020. 10.1103/​PhysRevB.101.241107.
https://​/​doi.org/​10.1103/​PhysRevB.101.241107

ہے [83] R. Prakash and A. Lakshminarayan. Scrambling in strongly chaotic weakly coupled bipartite systems: Universality beyond the Ehrenfest timescale. Phys. Rev. B, 101: 121108, 2020. 10.1103/​PhysRevB.101.121108.
https://​/​doi.org/​10.1103/​PhysRevB.101.121108

ہے [84] W. V. Berdanier. Universality in Non-Equilibrium Quantum Systems. PhD thesis, University of California, Berkeley, 2020. arXiv:2009.05706 [cond-mat.str-el], 2020. DOI: 10.48550/​arXiv.2009.05706.
https://​doi.org/​10.48550/​arXiv.2009.05706
آر ایکس سی: 2009.05706

ہے [85] T. W. B. Kibble. Topology of cosmic domains and strings. J. Phys. A, 9 (8): 1387–1398, 1976. 10.1088/​0305-4470/​9/​8/​029.
https:/​/​doi.org/​10.1088/​0305-4470/​9/​8/​029

ہے [86] W. H. Zurek. Cosmological experiments in superfluid helium? Nature, 317 (6037): 505–508, 1985. 10.1038/​317505a0.
https://​doi.org/​10.1038/​317505a0

ہے [87] A. del Campo and W. H. Zurek. Universality of phase transition dynamics: Topological defects from symmetry breaking. Int. J. Mod. Phys. A, 29 (08): 1430018, 2014. 10.1142/​S0217751X1430018X.
https://​/​doi.org/​10.1142/​S0217751X1430018X

ہے [88] J. Berges, A. Rothkopf, and J. Schmidt. Nonthermal Fixed Points: Effective Weak Coupling for Strongly Correlated Systems Far from Equilibrium. Phys. Rev. Lett., 101: 041603, 2008. 10.1103/​PhysRevLett.101.041603.
https://​/​doi.org/​10.1103/​PhysRevLett.101.041603

ہے [89] A. Piñeiro Orioli, K. Boguslavski, and J. Berges. Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 92: 025041, 2015. 10.1103/​PhysRevD.92.025041.
https://​/​doi.org/​10.1103/​PhysRevD.92.025041

ہے [90] J. Berges, K. Boguslavski, S. Schlichting, and R. Venugopalan. Universality Far from Equilibrium: From Superfluid Bose Gases to Heavy-Ion Collisions. Phys. Rev. Lett., 114: 061601, 2015. 10.1103/​PhysRevLett.114.061601.
https://​/​doi.org/​10.1103/​PhysRevLett.114.061601

ہے [91] M. Karl and T. Gasenzer. Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas. New J. Phys., 19 (9): 093014, 2017. 10.1088/​1367-2630/​aa7eeb.
https:/​/​doi.org/​10.1088/​1367-2630/​aa7eeb

ہے [92] A. Chatrchyan, K. T. Geier, M. K. Oberthaler, J. Berges, and P. Hauke. Analog cosmological reheating in an ultracold Bose gas. Phys. Rev. A, 104: 023302, 2021. 10.1103/​PhysRevA.104.023302.
https://​/​doi.org/​10.1103/​PhysRevA.104.023302

ہے [93] L. Gresista, T. V. Zache, and J. Berges. Dimensional crossover for universal scaling far from equilibrium. Phys. Rev. A, 105: 013320, 2022. 10.1103/​PhysRevA.105.013320.
https://​/​doi.org/​10.1103/​PhysRevA.105.013320

ہے [94] ای اینڈرسن، جے ڈی کریسر، اور ایم جے ڈبلیو ہال۔ ایک ماسٹر مساوات سے کراؤس سڑنا اور اس کے برعکس تلاش کرنا۔ جے موڈ اختیار، 54 (12): 1695–1716، 2007۔ 10.1080/09500340701352581۔
https://​doi.org/​10.1080/​09500340701352581

ہے [95] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson. Canonical form of master equations and characterization of non-Markovianity. Phys. Rev. A, 89: 042120, 2014. 10.1103/​PhysRevA.89.042120.
https://​/​doi.org/​10.1103/​PhysRevA.89.042120

ہے [96] C. M. Kropf, C. Gneiting, and A. Buchleitner. Effective Dynamics of Disordered Quantum Systems. Phys. Rev. X, 6: 031023, 2016. 10.1103/​PhysRevX.6.031023.
https://​/​doi.org/​10.1103/​PhysRevX.6.031023

ہے [97] R. de J. León-Montiel, V. Méndez, M. A. Quiroz-Juárez, A. Ortega, L. Benet, A. Perez-Leija, and K. Busch. Two-particle quantum correlations in stochastically-coupled networks. New J. Phys., 21 (5): 053041, 2019. 10.1088/​1367-2630/​ab1c79.
https:/​/​doi.org/​10.1088/​1367-2630/​ab1c79

ہے [98] R. Román-Ancheyta, B. Çakmak, R. de J. León-Montiel, and A. Perez-Leija. Quantum transport in non-Markovian dynamically disordered photonic lattices. Phys. Rev. A, 103: 033520, 2021. 10.1103/​PhysRevA.103.033520.
https://​/​doi.org/​10.1103/​PhysRevA.103.033520

ہے [99] F. Benatti, R. Floreanini, and S. Olivares. Non-divisibility and non-Markovianity in a Gaussian dissipative dynamics. Phys. Lett. A, 376: 2951–2954, 2012. 10.1016/​j.physleta.2012.08.044.
https://​doi.org/​10.1016/​j.physleta.2012.08.044

ہے [100] A. Chenu, M. Beau, J. Cao, and A. del Campo. Quantum Simulation of Generic Many-Body Open System Dynamics Using Classical Noise. Phys. Rev. Lett., 118: 140403, 2017. 10.1103/​PhysRevLett.118.140403.
https://​/​doi.org/​10.1103/​PhysRevLett.118.140403

ہے [101] A. A. Budini. Non-Markovian Gaussian dissipative stochastic wave vector. Phys. Rev. A, 63: 012106, 2000. 10.1103/​PhysRevA.63.012106.
https://​/​doi.org/​10.1103/​PhysRevA.63.012106

ہے [102] A. A. Budini. Quantum systems subject to the action of classical stochastic fields. Phys. Rev. A, 64: 052110, 2001. 10.1103/​PhysRevA.64.052110.
https://​/​doi.org/​10.1103/​PhysRevA.64.052110

ہے [103] J. Mildenberger. Trapped-ion quantum simulations of spin systems at non-vanishing temperature. Master’s thesis, Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany, 2019.

ہے [104] W. M. Visscher. Transport processes in solids and linear-response theory. Phys. Rev. A, 10: 2461–2472, 1974. 10.1103/​PhysRevA.10.2461.
https://​/​doi.org/​10.1103/​PhysRevA.10.2461

ہے [105] A. Schekochihin and R. Kulsrud. Finite-correlation-time effects in the kinematic dynamo problem. Phys. Plasmas, 8: 4937, 2001. 10.1063/​1.1404383.
https://​doi.org/​10.1063/​1.1404383

ہے [106] R. Kubo. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn., 12: 570–586, 1957. 10.1143/​JPSJ.12.570.
https://​doi.org/​10.1143/JPSJ.12.570

ہے [107] J. F. C. van Velsen. On linear response theory and area preserving mappings. Phys. Rep., 41: 135–190, 1978. 10.1016/​0370-1573(78)90136-9.
https:/​/​doi.org/​10.1016/​0370-1573(78)90136-9

ہے [108] R. Kubo, M. Toda, and N. Hashitsume. Statistical Physics II, volume 31 of Springer Series in Solid-State Sciences. Springer-Verlag Berlin Heidelberg, 1 edition, 1985. 10.1007/​978-3-642-96701-6.
https:/​/​doi.org/​10.1007/​978-3-642-96701-6

ہے [109] C. M. van Vliet. On van Kampen’s objections against linear response theory. J. Stat. Phys., 53: 49–60, 1988. 10.1007/​BF01011544.
https://​doi.org/​10.1007/​BF01011544

ہے [110] D. Goderis, A. Verbeure, and P. Vets. About the Exactness of the Linear Response Theory. Commun. Math. Phys., 136: 265–283, 1991. 10.1007/​BF02100025.
https://​doi.org/​10.1007/​BF02100025

ہے [111] S. Bandyopadhyay et al. in preparation.

ہے [112] C. L. Baldwin and B. Swingle. Quenched vs Annealed: Glassiness from SK to SYK. Phys. Rev. X, 10: 031026, 2020. 10.1103/​PhysRevX.10.031026.
https://​/​doi.org/​10.1103/​PhysRevX.10.031026

ہے [113] J. Hubbard. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A, 276: 238–257, 1963. 10.1098/​rspa.1963.0204.
https://​doi.org/​10.1098/​rspa.1963.0204

ہے [114] E. Fradkin. The Hubbard model, page 8–26. Cambridge University Press, 2 edition, 2013. 10.1017/​CBO9781139015509.004.
https://​doi.org/​10.1017/​CBO9781139015509.004

ہے [115] L. Pezzè and A. Smerzi. Quantum theory of phase estimation. In G. M. Tino and M. A. Kasevich, editors, Atom Interferometry, volume 188 of Proceedings of the International School of Physics “Enrico Fermi”, pages 691 – 741. IOS Press, 2014. 10.3254/​978-1-61499-448-0-691.
https:/​/​doi.org/​10.3254/​978-1-61499-448-0-691

ہے [116] C. L. Degen, F. Reinhard, and P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89: 035002, 2017. 10.1103/​RevModPhys.89.035002.
https://​/​doi.org/​10.1103/​RevModPhys.89.035002

ہے [117] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 90: 035005, 2018. 10.1103/​RevModPhys.90.035005.
https://​/​doi.org/​10.1103/​RevModPhys.90.035005

ہے [118] جی ٹوتھ کثیر الجہتی الجھن اور اعلی صحت سے متعلق میٹرولوجی۔ طبیعیات Rev. A, 85: 022322, 2012. 10.1103/ PhysRevA.85.022322.
https://​/​doi.org/​10.1103/​PhysRevA.85.022322

ہے [119] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, and A. Smerzi. Fisher information and multiparticle entanglement. Phys. Rev. A, 85: 022321, 2012. 10.1103/​PhysRevA.85.022321.
https://​/​doi.org/​10.1103/​PhysRevA.85.022321

ہے [120] P. Hauke, M. Heyl, L. Tagliacozzo, and P. Zoller. Measuring multipartite entanglement through dynamic susceptibilities. Nat. Phys., 12: 778–782, 2016. 10.1038/​nphys3700.
https://​doi.org/​10.1038/​nphys3700

ہے [121] M. Gabbrielli, A. Smerzi, and L. Pezzè. Multipartite Entanglement at Finite Temperature. Sci. Rep., 8 (1): 15663, 2018. 10.1038/​s41598-018-31761-3.
https:/​/​doi.org/​10.1038/​s41598-018-31761-3

ہے [122] R. Costa de Almeida and P. Hauke. From entanglement certification with quench dynamics to multipartite entanglement of interacting fermions. Phys. Rev. Res., 3: L032051, 2021. 10.1103/​PhysRevResearch.3.L032051.
https://​/​doi.org/​10.1103/​PhysRevResearch.3.L032051

ہے [123] ایل فوینی اور جے کرچن۔ Eigenstate تھرملائزیشن مفروضہ اور وقت سے باہر آرڈر کے ارتباط کار۔ طبیعات Rev. E, 99: 042139, 2019. 10.1103/ PhysRevE.99.042139.
https://​/​doi.org/​10.1103/​PhysRevE.99.042139

ہے [124] A. Chan, A. De Luca, and J. T. Chalker. Eigenstate Correlations, Thermalization, and the Butterfly Effect. Phys. Rev. Lett., 122: 220601, 2019. 10.1103/​PhysRevLett.122.220601.
https://​/​doi.org/​10.1103/​PhysRevLett.122.220601

ہے [125] M. Brenes, S. Pappalardi, J. Goold, and A. Silva. Multipartite Entanglement Structure in the Eigenstate Thermalization Hypothesis. Phys. Rev. Lett., 124: 040605, 2020. 10.1103/​PhysRevLett.124.040605.
https://​/​doi.org/​10.1103/​PhysRevLett.124.040605

ہے [126] پی ریمن۔ بند کئی باڈی سسٹمز میں عام تیز تھرملائزیشن کے عمل۔ نیٹ Commun., 7: 10821, 2016. 10.1038/ncomms10821۔
https://​doi.org/​10.1038/​ncomms10821

ہے [127] V. V. Flambaum and F. M. Izrailev. Unconventional decay law for excited states in closed many-body systems. Phys. Rev. E, 64: 026124, 2001. 10.1103/​PhysRevE.64.026124.
https://​/​doi.org/​10.1103/​PhysRevE.64.026124

ہے [128] F. Borgonovi, F.M. Izrailev, L.F. Santos, and V.G. Zelevinsky. Quantum chaos and thermalization in isolated systems of interacting particles. Phys. Rep., 626: 1–58, 2016. 10.1016/​j.physrep.2016.02.005.
https://​/​doi.org/​10.1016/​j.physrep.2016.02.005

ہے [129] M. Vyas. Non-equilibrium many-body dynamics following a quantum quench. AIP Conf. Proc., 1912 (1): 020020, 2017. 10.1063/​1.5016145.
https://​doi.org/​10.1063/​1.5016145

ہے [130] M. Távora, E. J. Torres-Herrera, and L. F. Santos. Inevitable power-law behavior of isolated many-body quantum systems and how it anticipates thermalization. Phys. Rev. A, 94: 041603, 2016. 10.1103/​PhysRevA.94.041603.
https://​/​doi.org/​10.1103/​PhysRevA.94.041603

ہے [131] E. A. Novikov. Functionals and the random-force method in turbulence theory. Sov. Phys. – JETP, 20 (5): 1290, 1965.

ہے [132] K. Furutsu. On the Statistical Theory of Electromagnetic Waves in a Fluctuating Medium (I). J. Res. Natl. Bur. Stand., D-67 (3): 303–323, 1963. 10.6028/​JRES.067D.034.
https:/​/​doi.org/​10.6028/​JRES.067D.034

ہے [133] K. Furutsu. Statistical Theory of Wave Propagation in a Random Medium and the Irradiance Distribution Function. J. Opt. Soc. Am., 62 (2): 240–254, 1972. 10.1364/​JOSA.62.000240.
https://​doi.org/​10.1364/JOSA.62.000240

ہے [134] V. I. Klyatskin and V. I. Tatarskii. Statistical averages in dynamical systems. Theor. Math. Phys., 17: 1143–1149, 1973. 10.1007/​BF01037265.
https://​doi.org/​10.1007/​BF01037265

ہے [135] A. Paviglianiti, S. Bandyopadhyay, P. Uhrich, and P. Hauke. Absence of operator growth for average equal-time observables in charge-conserved sectors of the Sachdev-Ye-Kitaev model. J. High Energ. Phys., 2023 (3): 126, 2023. 10.1007/​jhep03(2023)126.
https://​doi.org/​10.1007/​jhep03(2023)126

ہے [136] C. Gardiner and P. Zoller. The Quantum World of Ultra-Cold Atoms and Light I. Imperial College Press, 2014. 10.1142/​p941.
https://​doi.org/​10.1142/​p941

ہے [137] N. G. van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, 1 edition, 1992.

ہے [138] R. C. Bourret. Propagation of randomly perturbed fields. Can. J. Phys., 40 (6): 782–790, 1962. 10.1139/​p62-084.
https://​doi.org/​10.1139/​p62-084

ہے [139] A. Dubkov and O. Muzychuk. Analysis of higher approximations of Dyson’s equation for the mean value of the Green function. Radiophys. Quantum Electron., 20: 623–627, 1977. 10.1007/​BF01033768.
https://​doi.org/​10.1007/​BF01033768

ہے [140] N. G. Van Kampen. A cumulant expansion for stochastic linear differential equations. I and II. Physica, 74 (2): 215–238 and 239–247, 1974. 10.1016/​0031-8914(74)90121-9.
https:/​/​doi.org/​10.1016/​0031-8914(74)90121-9

ہے [141] H. P. Breuer and F. Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2007. 10.1093/​acprof:oso/​9780199213900.001.0001.
https://​/​doi.org/​10.1093/​acprof:oso/​9780199213900.001.0001

ہے [142] D. Manzano. A short introduction to the Lindblad master equation. AIP Adv., 10 (2): 025106, 2020. 10.1063/​1.5115323.
https://​doi.org/​10.1063/​1.5115323

ہے [143] D. A. Lidar, A. Shabani, and R. Alicki. Conditions for strictly purity-decreasing quantum Markovian dynamics. Chem. Phys., 322: 82–86, 2020. 10.1016/​j.chemphys.2005.06.038.
https://​doi.org/​10.1016/​j.chemphys.2005.06.038

ہے [144] B. Kraus, H. P. Büchler, S. Diehl, A. Kantian, A. Micheli, and P. Zoller. Preparation of entangled states by quantum Markov processes. Phys. Rev. A, 78: 042307, 2008. 10.1103/​PhysRevA.78.042307.
https://​/​doi.org/​10.1103/​PhysRevA.78.042307

ہے [145] F. Minganti, A. Biella, N. Bartolo, and C. Ciuti. Spectral theory of Liouvillians for dissipative phase transitions. Phys. Rev. A, 98: 042118, 2018. 10.1103/​PhysRevA.98.042118.
https://​/​doi.org/​10.1103/​PhysRevA.98.042118

ہے [146] J. Tindall, B. Buča, J. R. Coulthard, and D. Jaksch. Heating-induced long-range ${eta}$ pairing in the hubbard model. Phys. Rev. Lett., 123: 030603, 2019. 10.1103/​PhysRevLett.123.030603.
https://​/​doi.org/​10.1103/​PhysRevLett.123.030603

ہے [147] A. Ghoshal, S. Das, A. Sen(De), and U. Sen. Population inversion and entanglement in single and double glassy Jaynes–Cummings models. Phys. Rev. A, 101: 053805, 2020. 10.1103/​PhysRevA.101.053805.
https://​/​doi.org/​10.1103/​PhysRevA.101.053805

ہے [148] P. Hänggi. Correlation functions and masterequations of generalized (non-Markovian) Langevin equations. Z. Physik B, 31 (4): 407–416, 1978. 10.1007/​BF01351552.
https://​doi.org/​10.1007/​BF01351552

ہے [149] M. Schiulaz, E. J. Torres-Herrera, F. Pérez-Bernal, and L. F. Santos. Self-averaging in many-body quantum systems out of equilibrium: Chaotic systems. Phys. Rev. B, 101: 174312, 2020. 10.1103/​PhysRevB.101.174312.
https://​/​doi.org/​10.1103/​PhysRevB.101.174312

ہے [150] E. J. Torres-Herrera and L. F. Santos. Signatures of chaos and thermalization in the dynamics of many-body quantum systems. Eur. Phys. J. Spec. Top., 227 (15): 1897–1910, 2019. 10.1140/​epjst/​e2019-800057-8.
https://​/​doi.org/​10.1140/​epjst/​e2019-800057-8

ہے [151] E. J. Torres-Herrera, I. Vallejo-Fabila, A. J. Martínez-Mendoza, and L. F. Santos. Self-averaging in many-body quantum systems out of equilibrium: Time dependence of distributions. Phys. Rev. E, 102: 062126, 2020. 10.1103/​PhysRevE.102.062126.
https://​/​doi.org/​10.1103/​PhysRevE.102.062126

ہے [152] A. Chenu, J. Molina-Vilaplana, and A. del Campo. Work Statistics, Loschmidt Echo and Information Scrambling in Chaotic Quantum Systems. Quantum, 3: 127, 2019. 10.22331/​q-2019-03-04-127.
https:/​/​doi.org/​10.22331/​q-2019-03-04-127

ہے [153] T. L. M. Lezama, E. J. Torres-Herrera, F. Pérez-Bernal, Y. Bar Lev, and L. F. Santos. Equilibration time in many-body quantum systems. Phys. Rev. B, 104: 085117, 2021. 10.1103/​PhysRevB.104.085117.
https://​/​doi.org/​10.1103/​PhysRevB.104.085117

ہے [154] Daniel A. Lidar. Lecture notes on the theory of open quantum systems. arXiv:1902.00967 [quant-ph], 2020. 10.48550/​arXiv.1902.00967.
https://​doi.org/​10.48550/​arXiv.1902.00967
آر ایکس سی: 1902.00967

ہے [155] Á. Rivas and S. F. Huelga. Open Quantum Systems: An Introduction. Springer Briefs in Physics. Springer, 2011. 10.1007/​978-3-642-23354-8.
https:/​/​doi.org/​10.1007/​978-3-642-23354-8

ہے [156] D. Nigro. On the uniqueness of the steady-state solution of the Lindblad–Gorini–Kossakowski–Sudarshan equation. J. Stat. Mech., 2019 (4): 043202, 2019. 10.1088/​1742-5468/​ab0c1c.
https:/​/​doi.org/​10.1088/​1742-5468/​ab0c1c

ہے [157] G. Bentsen, I.-D. Potirniche, V. B. Bulchandani, T. Scaffidi, X. Cao, X.-L. Qi, M. Schleier-Smith, and E. Altman. Integrable and Chaotic Dynamics of Spins Coupled to an Optical Cavity. Phys. Rev. X, 9: 041011, 2019b. 10.1103/​PhysRevX.9.041011.
https://​/​doi.org/​10.1103/​PhysRevX.9.041011

ہے [158] R. Nandkishore and D. A. Huse. Many-Body Localization and Thermalization in Quantum Statistical Mechanics. Annu. Rev. of Condens. Matter Phys., 6 (1): 15–38, 2015. 10.1146/​annurev-conmatphys-031214-014726.
https://​doi.org/​10.1146/annurev-conmatphys-031214-014726

ہے [159] P. Sierant, D. Delande, and J. Zakrzewski. Many-body localization due to random interactions. Phys. Rev. A, 95: 021601, 2017. 10.1103/​PhysRevA.95.021601.
https://​/​doi.org/​10.1103/​PhysRevA.95.021601

ہے [160] D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn. Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 91: 021001, 2019. 10.1103/​RevModPhys.91.021001.
https://​/​doi.org/​10.1103/​RevModPhys.91.021001

ہے [161] P. Sierant and J. Zakrzewski. Challenges to observation of many-body localization. Phys. Rev. B, 105: 224203, 2022. 10.1103/​PhysRevB.105.224203.
https://​/​doi.org/​10.1103/​PhysRevB.105.224203

ہے [162] M. B. Plenio and S. F. Huelga. Dephasing-assisted transport: quantum networks and biomolecules. New J. Phys., 10 (11): 113019, 2008. 10.1088/​1367-2630/​10/​11/​113019.
https:/​/​doi.org/​10.1088/​1367-2630/​10/​11/​113019

ہے [163] P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd, and A. Aspuru-Guzik. Environment-assisted quantum transport. New J. Phys., 11 (3): 033003, 2009. 10.1088/​1367-2630/​11/​3/​033003.
https:/​/​doi.org/​10.1088/​1367-2630/​11/​3/​033003

ہے [164] R. de J. León-Montiel, M. A. Quiroz-Juárez, R. Quintero-Torres, J. L. Domínguez-Juárez, H. M. Moya-Cessa, J. P. Torres, and J. L. Aragón. Noise-assisted energy transport in electrical oscillator networks with off-diagonal dynamical disorder. Sci. Rep., 5: 17339, 2015. 10.1038/​srep17339.
https://​doi.org/​10.1038/​srep17339

ہے [165] C. Maier, T. Brydges, P. Jurcevic, N. Trautmann, C. Hempel, B. P. Lanyon, P. Hauke, R. Blatt, and C. F. Roos. Environment-Assisted Quantum Transport in a 10-qubit Network. Phys. Rev. Lett., 122: 050501, 2019. 10.1103/​PhysRevLett.122.050501.
https://​/​doi.org/​10.1103/​PhysRevLett.122.050501

ہے [166] J. S. Liu. Siegel’s formula via Stein’s identities. Stat. Probabil. Lett., 21 (3): 247–251, 1994. 10.1016/​0167-7152(94)90121-X.
https:/​/​doi.org/​10.1016/​0167-7152(94)90121-X

ہے [167] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, 3 edition, 1999. 10.1137/​1.9780898719604.
https://​doi.org/​10.1137/​1.9780898719604

ہے [168] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.0, 2021.

کی طرف سے حوالہ دیا گیا

[1] Debanjan Chowdhury, Antoine Georges, Olivier Parcollet, and Subir Sachdev, “Sachdev-Ye-Kitaev models and beyond: Window into non-Fermi liquids”, جدید طبیعیات کے جائزے 94 3, 035004 (2022).

[2] Jan C. Louw and Stefan Kehrein, “Thermalization of many many-body interacting Sachdev-Ye-Kitaev models”, جسمانی جائزہ B 105 7, 075117 (2022).

[3] Ceren B. Dağ, Philipp Uhrich, Yidan Wang, Ian P. McCulloch, and Jad C. Halimeh, “Detecting quantum phase transitions in the quasi-stationary regime of Ising chains”, آر ایکس سی: 2110.02995, (2021).

[4] الیسیو پاویگلیانیٹی، سومک بندیوپادھیائے، فلپ یوہرچ، اور فلپ ہوک، "سچدیو-ی-کیتائیو ماڈل کے چارج محفوظ شعبوں میں اوسط برابر وقت کے مشاہدے کے لیے آپریٹر کی ترقی کی عدم موجودگی"، جرنل آف ہائی انرجی فزکس 2023 3, 126 (2023).

[5] Philipp Uhrich, Soumik Bandyopadhyay, Nick Sauerwein, Julian Sonner, Jean-Philippe Brantut, and Philipp Hauke, “A cavity quantum electrodynamics implementation of the Sachdev–Ye–Kitaev model”, آر ایکس سی: 2303.11343, (2023).

[6] Ceren B. Daǧ, Philipp Uhrich, Yidan Wang, Ian P. McCulloch, and Jad C. Halimeh, “Detecting quantum phase transitions in the quasistationary regime of Ising chains”, جسمانی جائزہ B 107 9, 094432 (2023).

مذکورہ بالا اقتباسات سے ہیں۔ SAO/NASA ADS (آخری بار کامیابی کے ساتھ 2023-05-25 00:04:19)۔ فہرست نامکمل ہو سکتی ہے کیونکہ تمام ناشرین مناسب اور مکمل حوالہ ڈیٹا فراہم نہیں کرتے ہیں۔

On Crossref کی طرف سے پیش خدمت کاموں کے حوالے سے کوئی ڈیٹا نہیں ملا (آخری کوشش 2023-05-25 00:04:17)۔

ٹائم اسٹیمپ:

سے زیادہ کوانٹم جرنل