Producția de entropie a întanglementării în rețelele neuronale cuantice

Producția de entropie a întanglementării în rețelele neuronale cuantice

Nodul sursă: 2704487

Marco Ballarin1,2,3, Stefano Mangini1,4,5, Simone Montangero2,3,6, Chiara Macchiavello4,5,7și Riccardo Mengoni8

1Acești autori au contribuit în mod egal la această lucrare
2Dipartimento di Fisica e Astronomia "G. Galilei", via Marzolo 8, I-35131, Padova, Italy
3INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova, Italia
4Dipartimento di Fisica, Università di Pavia, Via Bassi 6, I-27100, Pavia, Italia
5INFN Sezione di Pavia, Via Bassi 6, I-27100, Pavia, Italia
6Padova Quantum Technologies Research Center, Università degli Studi di Padova
7CNR-INO - Largo E. Fermi 6, I-50125, Firenze, Italy
8CINECA Quantum Computing Lab, Via Magnanelli, 6/3, 40033 Casalecchio di Reno, Bologna, Italia

Găsiți această lucrare interesant sau doriți să discutați? Scite sau lasă un comentariu la SciRate.

Abstract

Rețelele neuronale cuantice (QNN) sunt considerate un candidat pentru obținerea unui avantaj cuantic în era computerului cuantic la scară intermediară zgomotoasă (NISQ). Mai multe arhitecturi QNN au fost propuse și testate cu succes pe seturi de date de referință pentru învățarea automată. Cu toate acestea, studiile cantitative ale încurcăturii generate de QNN au fost investigate doar pentru până la câțiva qubiți. Metodele de rețea tensorială permit emularea circuitelor cuantice cu un număr mare de qubiți într-o mare varietate de scenarii. Aici, folosim stări de produs matrice pentru a caracteriza arhitecturile QNN studiate recent cu parametri aleatori de până la cincizeci de qubiți, arătând că încrucișarea lor, măsurată în termeni de entropie de încrucișare între qubiți, tinde spre cea a stărilor aleatoare distribuite Haar pe măsură ce adâncimea QNN este crescută. . Certificăm aleatorietatea stărilor cuantice și prin măsurarea expresibilității circuitelor, precum și folosind instrumente din teoria matricelor aleatoare. Arătăm un comportament universal pentru rata la care se creează întanglementul în orice arhitectură QNN dată și, în consecință, introducem o nouă măsură pentru a caracteriza producția de întanglement în QNN-uri: viteza de încurcare. Rezultatele noastre caracterizează proprietățile de întricare ale rețelelor neuronale cuantice și oferă noi dovezi ale ratei la care aceste unități aleatoare aproximative.

► Date BibTeX

► Referințe

[1] Michael A. Nielsen and Isaac L. Chuang. ``Quantum computation and quantum information''. Cambridge University Press. Cambridge, UK (2010). 10th anniversary ed. (2010) edition.
https: / / doi.org/ 10.1017 / CBO9780511976667

[2] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. ``Deep learning''. MIT Press. (2016). url: http:/​/​www.deeplearningbook.org.
http: / / www.deeplearningbook.org

[3] Yann LeCun, Yoshua Bengio și Geoffrey Hinton. ``Învățare profundă''. Nature 521, 436–444 (2015).
https: / / doi.org/ 10.1038 / nature14539

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ``Imagenet classification with deep convolutional neural networks''. In Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. Page 1097–1105. NIPS'12Red Hook, NY, USA (2012). Curran Associates Inc.
https: / / doi.org/ 10.1145 / 3065386

[5] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. ``Mastering the game of Go with deep neural networks and tree search''. Nature 529, 484–489 (2016).
https: / / doi.org/ 10.1038 / nature16961

[6] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli, Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau, Olivier Sauter, Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet Kohli, Koray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. ``Magnetic control of tokamak plasmas through deep reinforcement learning''. Nature 602, 414–419 (2022).
https:/​/​doi.org/​10.1038/​s41586-021-04301-9

[7] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe și Seth Lloyd. ``Învățare automată cuantică''. Nature 549, 195–202 (2017).
https: / / doi.org/ 10.1038 / nature23474

[8] Vedran Dunjko and Peter Wittek. ``A non-review of quantum machine learning: trends and explorations''. Quantum 4, 32 (2020).
https:/​/​doi.org/​10.22331/​qv-2020-03-17-32

[9] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and et al. ``Variational quantum algorithms''. Nature Reviews Physics 3, 625–644 (2021).
https:/​/​doi.org/​10.1038/​s42254-021-00348-9

[10] S. Mangini, F. Tacchino, D. Gerace, D. Bajoni și C. Macchiavello. ``Modele de calcul cuantic pentru rețele neuronale artificiale''. Europhysics Letters 134, 10002 (2021).
https:/​/​doi.org/​10.1209/​0295-5075/​134/​10002

[11] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, și Alán Aspuru-Guzik. ``Algoritmi cuantici zgomotoși la scară intermediară''. Rev. Mod. Fiz. 94, 015004 (2022).
https: / / doi.org/ 10.1103 / RevModPhys.94.015004

[12] John Preskill. ``Calcul cuantic în era NISQ și nu numai''. Quantum 2, 79 (2018).
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[13] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. ``A variational eigenvalue solver on a photonic quantum processor''. Nat. Commun. 5 (2014).
https: / / doi.org/ 10.1038 / ncomms5213

[14] Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli și Stefan Woerner. „Puterea rețelelor neuronale cuantice”. Nature Computational Science 1, 403–409 (2021).
https:/​/​doi.org/​10.1038/​s43588-021-00084-1

[15] Hsin-Yuan Huang, Richard Kueng, and John Preskill. ``Information-theoretic bounds on quantum advantage in machine learning''. Phys. Rev. Lett. 126, 190505 (2021).
https: / / doi.org/ 10.1103 / PhysRevLett.126.190505

[16] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut Neven și Jarrod R. McClean. „Puterea datelor în învățarea automată cuantică”. Nature Communications 12, 2631 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-22539-9

[17] Franz J. Schreiber, Jens Eisert, and Johannes Jakob Meyer. ``Classical surrogates for quantum learning models'' (2022) arXiv:2206.11740.
arXiv: 2206.11740

[18] Thomas Hubregtsen, Josef Pichlmeier, Patrick Stecher, and Koen Bertels. ``Evaluation of parameterized quantum circuits: On the relation between classification accuracy, expressibility, and entangling capability''. Quantum Machine Intelligence 3, 9 (2021).
https: / / doi.org/ 10.1007 / s42484-021-00038-w

[19] M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. ``Cost function dependent barren plateaus in shallow parametrized quantum circuits''. Nat. Commun. 12 (2021).
https: / / doi.org/ 10.1038 / s41467-021-21728-w

[20] Iris Cong, Soonwon Choi, and Mikhail D. Lukin. ``Quantum convolutional neural networks''. Nature Physics 15, 1273–1278 (2019).
https:/​/​doi.org/​10.1038/​s41567-019-0648-8

[21] Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna Mele, Francesco Arzani, Alissa Wilms, and Jens Eisert. ``Exploiting symmetry in variational quantum machine learning''. PRX Quantum 4, 010328 (2023).
https: / / doi.org/ 10.1103 / PRXQuantum.4.010328

[22] Andrea Skolik, Michele Cattelan, Sheir Yarkoni, Thomas Bäck, and Vedran Dunjko. ``Equivariant quantum circuits for learning on weighted graphs''. npj Quantum Information 9, 47 (2023).
https: / / doi.org/ 10.1038 / s41534-023-00710-y

[23] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik. ``Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms''. Adv. Quantum Technol. 2, 1900070 (2019).
https: / / doi.org/ 10.1002 / qute.201900070

[24] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I. Latorre. ``Data re-uploading for a universal quantum classifier''. Quantum 4, 226 (2020).
https:/​/​doi.org/​10.22331/​q-2020-02-06-226

[25] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. ``Effect of data encoding on the expressive power of variational quantum-machine-learning models''. Phys. Rev. A 103, 032430 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.103.032430

[26] Francesco Tacchino, Stefano Mangini, Panagiotis Kl. Barkoutsos, Chiara Macchiavello, Dario Gerace, Ivano Tavernelli și Daniele Bajoni. „Învățare variațională pentru rețele neuronale artificiale cuantice”. IEEE Transactions on Quantum Engineering 2, 1–10 (2021).
https: / / doi.org/ 10.1109 / TQE.2021.3062494

[27] B Jaderberg, L W Anderson, W Xie, S Albanie, M Kiffner, and D Jaksch. ``Quantum self-supervised learning''. Quantum Science and Technology 7, 035005 (2022).
https: / / doi.org/ 10.1088 / 2058-9565 / ac6825

[28] David A. Meyer and Nolan R. Wallach. ``Global entanglement in multiparticle systems''. Journal of Mathematical Physics 43, 4273–4278 (2002).
https: / / doi.org/ 10.1063 / 1.1497700

[29] Pietro Silvi, Ferdinand Tschirsich, Matthias Gerster, Johannes Jünemann, Daniel Jaschke, Matteo Rizzi, and Simone Montangero. ``The tensor networks anthology: Simulation techniques for many-body quantum lattice systems''. SciPost Physics Lecture Notes (2019).
https://​/​doi.org/​10.21468/​scipostphyslectnotes.8

[30] S. Montangero. ``Introduction to tensor network methods''. Springer International Publishing. Cham, CH (2018).
https:/​/​doi.org/​10.1007/​978-3-030-01409-4

[31] J. Eisert. ``Entanglement and tensor network states'' (2013). arXiv:1308.3318.
arXiv: 1308.3318

[32] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Salvatore R. Manmana, Ulrich Schollwöck și Claudius Hubig. ``Metode de evoluție în timp pentru stările matrice-produs''. Analele fizicii 411, 167998 (2019).
https: / / doi.org/ 10.1016 / j.aop.2019.167998

[33] Patrick Hayden, Debbie W. Leung, and Andreas Winter. ``Aspects of Generic Entanglement''. Communications in Mathematical Physics 265, 95–117 (2006).
https:/​/​doi.org/​10.1007/​s00220-006-1535-6

[34] Elizabeth S. Meckes. ``The Random Matrix Theory of the Classical Compact Groups''. Cambridge Tracts in Mathematics. Cambridge University Press. Cambridge (2019).
https: / / doi.org/ 10.1017 / 9781108303453

[35] Alan Edelman and N. Raj Rao. ``Random matrix theory''. Acta Numerica 14, 233–297 (2005).
https: / / doi.org/ 10.1017 / S0962492904000236

[36] Don N. Page. ``Average entropy of a subsystem''. Phys. Rev. Lett. 71, 1291–1294 (1993).
https: / / doi.org/ 10.1103 / PhysRevLett.71.1291

[37] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. ``The theory of variational hybrid quantum-classical algorithms''. New J. Phys. 18, 023023 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​2/​023023

[38] Francisco Javier Gil Vidal and Dirk Oliver Theis. ``Input redundancy for parameterized quantum circuits''. Front. Phys. 8, 297 (2020).
https: / / doi.org/ 10.3389 / fphy.2020.00297

[39] E. Torrontegui and J. J. Garcia-Ripoll. ``Unitary quantum perceptron as efficient universal approximator''. EPL 125, 30004 (2019).
https:/​/​doi.org/​10.1209/​0295-5075/​125/​30004

[40] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. ``Barren plateaus in quantum neural network training landscapes''. Nat. Commun. 9, 4812 (2018).
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[41] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac și Nathan Killoran. ``Evaluarea gradienților analitici pe hardware cuantic''. Fiz. Rev. A 99, 032331 (2019).
https: / / doi.org/ 10.1103 / PhysRevA.99.032331

[42] Andrew Arrasmith, M. Cerezo, Piotr Czarnik, Lukasz Cincio, and Patrick J. Coles. ``Effect of barren plateaus on gradient-free optimization''. Quantum 5, 558 (2021).
https:/​/​doi.org/​10.22331/​q-2021-10-05-558

[43] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles. ``Connecting ansatz expressibility to gradient magnitudes and barren plateaus''. PRX Quantum 3, 010313 (2022).
https: / / doi.org/ 10.1103 / PRXQuantum.3.010313

[44] Carlos Ortiz Marrero, Mária Kieferová și Nathan Wiebe. ``Plașuri sterpe induse de încâlcire''. PRX Quantum 2, 040316 (2021).
https: / / doi.org/ 10.1103 / PRXQuantum.2.040316

[45] Samson Wang, Enrico Fontana, M. Cerezo, Kunal Sharma, Akira Sone, Lukasz Cicio și Patrick J. Coles. „Plașuri sterile induse de zgomot în algoritmi cuantici variaționali”. Nature Communications 12, 6961 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-27045-6

[46] Christoph Dankert, Richard Cleve, Joseph Emerson, and Etera Livine. ``Exact and approximate unitary 2-designs and their application to fidelity estimation''. Physical Review A 80 (2009).
https: / / doi.org/ 10.1103 / physreva.80.012304

[47] Andrew Arrasmith, Zoë Holmes, Marco Cerezo și Patrick J Coles. „Echivalența platourilor cuantice sterile cu concentrarea costurilor și cheile înguste”. Quantum Science and Technology 7, 045015 (2022).
https:/​/​doi.org/​10.1088/​2058-9565/​ac7d06

[48] Stefan H. Sack, Raimel A. Medina, Alexios A. Michailidis, Richard Kueng, and Maksym Serbyn. ``Avoiding barren plateaus using classical shadows''. PRX Quantum 3, 020365 (2022).
https: / / doi.org/ 10.1103 / PRXQuantum.3.020365

[49] Taylor L. Patti, Khadijeh Najafi, Xun Gao, and Susanne F. Yelin. ``Entanglement devised barren plateau mitigation''. Phys. Rev. Research 3, 033090 (2021).
https: / / doi.org/ 10.1103 / PhysRevResearch.3.033090

[50] Zi-Wen Liu, Seth Lloyd, Elton Zhu, and Huangjun Zhu. ``Entanglement, quantum randomness, and complexity beyond scrambling''. Journal of High Energy Physics 2018, 41 (2018).
https: / / doi.org/ 10.1007 / JHEP07 (2018) 041

[51] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski și Marcello Benedetti. „O strategie de inițializare pentru abordarea platourilor sterile în circuitele cuantice parametrizate”. Quantum 3, 214 (2019).
https://​/​doi.org/​10.48550/​arXiv.1903.05076

[52] Tyler Volkoff și Patrick J Coles. ``Gradienți mari prin corelație în circuite cuantice parametrizate aleatoriu''. Quantum Science and Technology 6, 025008 (2021).
https: / / doi.org/ 10.1088 / 2058-9565 / abd891

[53] Andrea Skolik, Jarrod R McClean, Masoud Mohseni, Patrick van der Smagt, and Martin Leib. ``Layerwise learning for quantum neural networks''. Quantum Machine Intelligence 3, 1–11 (2021).
https:/​/​doi.org/​10.1007/​s42484-020-00036-4

[54] Joonho Kim and Yaron Oz. ``Entanglement diagnostics for efficient vqa optimization''. Journal of Statistical Mechanics: Theory and Experiment 2022, 073101 (2022).
https: / / doi.org/ 10.1088 / 1742-5468 / ac7791

[55] Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta. ``Supervised learning with quantum-enhanced feature spaces''. Nature 567, 209–212 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0980-2

[56] Aram W. Harrow and Richard A. Low. ``Random Quantum Circuits are Approximate 2-designs''. Communications in Mathematical Physics 291, 257–302 (2009).
https:/​/​doi.org/​10.1007/​s00220-009-0873-6

[57] Jonas Haferkamp and Nicholas Hunter-Jones. ``Improved spectral gaps for random quantum circuits: Large local dimensions and all-to-all interactions''. Phys. Rev. A 104, 022417 (2021).
https: / / doi.org/ 10.1103 / PhysRevA.104.022417

[58] Maria Schuld. ``Supervised quantum machine learning models are kernel methods'' (2021) arXiv:2101.11020.
arXiv: 2101.11020

[59] Sofiene Jerbi, Lukas J Fiderer, Hendrik Poulsen Nautrup, Jonas M Kübler, Hans J Briegel și Vedran Dunjko. ``Învățare automată cuantică dincolo de metodele nucleului''. Nature Communications 14, 517 (2023).
https: / / doi.org/ 10.1038 / s41467-023-36159-y

[60] Seth Lloyd. ``Quantum approximate optimization is computationally universal'' (2018) arXiv:1812.11075.
arXiv: 1812.11075

[61] M. E. S. Morales, J. D. Biamonte, and Z. Zimborás. ``On the universality of the quantum approximate optimization algorithm''. Quantum Information Processing 19, 291 (2020).
https:/​/​doi.org/​10.1007/​s11128-020-02748-9

[62] Fernando G. S. L. Brandão, Aram W. Harrow, and Michał Horodecki. ``Local Random Quantum Circuits are Approximate Polynomial-Designs''. Communications in Mathematical Physics 346, 397–434 (2016).
https:/​/​doi.org/​10.1007/​s00220-016-2706-8

[63] Aram W Harrow and Saeed Mehraban. ``Approximate unitary t-designs by short random quantum circuits using nearest-neighbor and long-range gates''. Communications in Mathematical PhysicsPages 1–96 (2023).
https: / / doi.org/ 10.1007 / s00220-023-04675-z

[64] Pasquale Calabrese și John Cardy. ``Evoluția entropiei de încrucișare în sisteme unidimensionale''. Journal of Statistical Mechanics: Theory and Experiment 2005, P04010 (2005).
https:/​/​doi.org/​10.1088/​1742-5468/​2005/​04/​p04010

[65] Tianci Zhou și Adam Nahum. ``Mecanica statistică emergentă a întanglementării în circuite unitare aleatorii''. Fiz. Rev. B 99, 174205 (2019).
https: / / doi.org/ 10.1103 / PhysRevB.99.174205

[66] Adam Nahum, Jonathan Ruhman, Sagar Vijay, and Jeongwan Haah. ``Quantum entanglement growth under random unitary dynamics''. Phys. Rev. X 7, 031016 (2017).
https: / / doi.org/ 10.1103 / PhysRevX.7.031016

[67] M. Aeberhard, Stefan & Forina. ``Wine''. UCI Machine Learning Repository (1991). DOI: https:/​/​doi.org/​10.24432/​C5PC7J.
https://​/​doi.org/​10.24432/​C5PC7J

[68] Milan Zwitter, Matjaz & Soklic. ``Breast Cancer''. UCI Machine Learning Repository (1988). DOI: https:/​/​doi.org/​10.24432/​C51P4M.
https://​/​doi.org/​10.24432/​C51P4M

[69] Marko Žnidarič. ``Entanglement of random vectors''. Journal of Physics A: Mathematical and Theoretical 40, F105 (2006).
https:/​/​doi.org/​10.1088/​1751-8113/​40/​3/​F04

[70] Daniel Jaschke and Simone Montangero. ``Is quantum computing green? an estimate for an energy-efficiency quantum advantage''. Quantum Science and Technology (2022).
https://​/​doi.org/​10.1088/​2058-9565/​acae3e

[71] V A Marčenko and L A Pastur. ``Distribution of eigenvalues for some sets of random matrices''. Mathematics of the USSR-Sbornik 1, 457 (1967).
https:/​/​doi.org/​10.1070/​SM1967v001n04ABEH001994

[72] Zbigniew Puchała, Łukasz Pawela, and Karol Życzkowski. ``Distinguishability of generic quantum states''. Physical Review A 93, 062112 (2016).
https: / / doi.org/ 10.1103 / PhysRevA.93.062112

[73] Maxime Dupont, Nicolas Didier, Mark J. Hodson, Joel E. Moore, and Matthew J. Reagor. ``Entanglement perspective on the quantum approximate optimization algorithm''. Phys. Rev. A 106, 022423 (2022).
https: / / doi.org/ 10.1103 / PhysRevA.106.022423

[74] Andreas J. C. Woitzik, Panagiotis Kl. Barkoutsos, Filip Wudarski, Andreas Buchleitner, and Ivano Tavernelli. ``Entanglement production and convergence properties of the variational quantum eigensolver''. Phys. Rev. A 102, 042402 (2020).
https: / / doi.org/ 10.1103 / PhysRevA.102.042402

[75] Michael Ragone, Paolo Braccia, Quynh T. Nguyen, Louis Schatzki, Patrick J. Coles, Frederic Sauvage, Martin Larocca, and M. Cerezo. ``Representation theory for geometric quantum machine learning'' (2022) arXiv:2210.07980.
arXiv: 2210.07980

[76] Kunal Sharma, M. Cerezo, Zoë Holmes, Lukasz Cincio, Andrew Sornborger, and Patrick J. Coles. ``Reformulation of the no-free-lunch theorem for entangled datasets''. Phys. Rev. Lett. 128, 070501 (2022).
https: / / doi.org/ 10.1103 / PhysRevLett.128.070501

[77] Martin Larocca, Nathan Ju, Diego García-Martín, Patrick J. Coles, and M. Cerezo. ``Theory of overparametrization in quantum neural networks'' (2021) arXiv:2109.11676.
arXiv: 2109.11676

[78] Bobak Toussi Kiani, Seth Lloyd, and Reevu Maity. ``Learning unitaries by gradient descent'' (2020) arXiv:2001.11897.
arXiv: 2001.11897

[79] Eric R. Anschuetz and Bobak T. Kiani. ``Quantum variational algorithms are swamped with traps''. Nature Communications 13 (2022).
https:/​/​doi.org/​10.1038/​s41467-022-35364-5

[80] Md Sajid Anis et al. ``Qiskit: An open-source framework for quantum computing''. Zenodo (2021).
https: / / doi.org/ 10.5281 / zenodo.2562111

[81] Marco Ballarin. ``Quantum computer simulation via tensor networks''. Università degli Studi di Padova, Master Thesis (2021). url: https:/​/​hdl.handle.net/​20.500.12608/​21799.
https://​/​hdl.handle.net/​20.500.12608/​21799

[82] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M Sohaib Alam, Shahnawaz Ahmed, Juan Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri, et al. ``Pennylane: Automatic differentiation of hybrid quantum-classical computations'' (2018). arXiv:1811.04968.
arXiv: 1811.04968

[83] Julian Havil. ``Gamma: exploring euler's constant''. The Australian Mathematical SocietyPage 250 (2003). url: https:/​/​ieeexplore.ieee.org/​document/​9452347.
https://​/​ieeexplore.ieee.org/​document/​9452347

[84] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. ``Equivalent quantum circuits'' (2011). arXiv:1110.2998.
arXiv: 1110.2998

[85] Karol Życzkowski and Hans-Jürgen Sommers. ``Average fidelity between random quantum states''. Phys. Rev. A 71, 032313 (2005).
https: / / doi.org/ 10.1103 / PhysRevA.71.032313

Citat de

[1] Yuchen Guo and Shuo Yang, "Noise effects on purity and quantum entanglement in terms of physical implementability", Informații cuantice npj 9, 11 (2023).

[2] Dirk Heimann, Gunnar Schönhoff, and Frank Kirchner, "Learning capability of parametrized quantum circuits", arXiv: 2209.10345, (2022).

Citatele de mai sus sunt din ADS SAO / NASA (ultima actualizare cu succes 2023-06-06 14:08:58). Lista poate fi incompletă, deoarece nu toți editorii furnizează date de citare adecvate și complete.

On Crossref citat de serviciu nu s-au găsit date despre citarea lucrărilor (ultima încercare 2023-06-06 14:08:57).

Timestamp-ul:

Mai mult de la Jurnalul cuantic