Sonde neuronale in vivo 3D scalabile spațiotemporal bazate pe elastomeri fluorurati - Nature Nanotechnology

Sonde neuronale in vivo 3D scalabile spațiotemporal bazate pe elastomeri fluorurati – Nature Nanotechnology

Nodul sursă: 3036086
  • Sadtler, P. T. et al. Neural constraints on learning. Natură 512, 423-426 (2014).

    Articol 
    CAS 

    Google Academic
     

  • Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. & Miller, L. E. Long-term stability of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260-270 (2020).

    Articol 
    CAS 

    Google Academic
     

  • Perlmutter, J. S. & Mink, J. W. Deep brain stimulation. Annu. Rev. Neurosci. 29, 229-257 (2006).

    Articol 
    CAS 

    Google Academic
     

  • Patel, S. R. & Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotehnologie. 37, 1007-1012 (2019).

    Articol 
    CAS 

    Google Academic
     

  • Adolphs, R. The unsolved problems of neuroscience. Tendințe Cogn. Sci. 19, 173-175 (2015).

    Articol 

    Google Academic
     

  • Musk, E. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet Res. 21, e16194 (2019).

    Articol 

    Google Academic
     

  • Lacour, SP, Courtine, G. & Guck, J. Materiale și tehnologii pentru neuroproteze implantabile moi. Nat. Pr. Mater. 1, 16063 (2016).

    Articol 
    CAS 

    Google Academic
     

  • Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Natură 551, 232-236 (2017).

    Articol 
    CAS 

    Google Academic
     

  • Tooker, A. et al. Optimization of multi-layer metal neural probe design. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012, 5995-5998 (2012).


    Google Academic
     

  • Salatino, J. W., Ludwig, K. A., Kozai, T. D. Y. & Purcell, E. K. Glial responses to implanted electrodes in the brain. Nat. Biomed. ing. 1, 862-877 (2017).

    Articol 
    CAS 

    Google Academic
     

  • Liu, J. et al. Syringe-injectable electronics. Nat. Nanotehnologia. 10, 629-636 (2015).

    Articol 
    CAS 

    Google Academic
     

  • Yang, X. și colab. Electronică bioinspirată asemănătoare neuronilor. Nat. Mater. 18, 510-517 (2019).

    Articol 
    CAS 

    Google Academic
     

  • Chung, J. E. et al. High-density, long-lasting, and multi-region electrophysiological recordings using polymer electrode arrays. Neuron 101, 21-31 (2019).

    Articol 
    CAS 

    Google Academic
     

  • Someya, T., Bao, Z. & Malliaras, GG Ascensiunea bioelectronicii plastice. Natură 540, 379-385 (2016).

    Articol 
    CAS 

    Google Academic
     

  • Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310-315 (2015).

    Articol 
    CAS 

    Google Academic
     

  • Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286-1292 (2015).

    Articol 
    CAS 

    Google Academic
     

  • Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Știință. Adv. 3, e1601966 (2017).

    Articol 

    Google Academic
     

  • Fu, T. M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. metode 13, 875-882 (2016).

    Articol 
    CAS 

    Google Academic
     

  • Dalvi, V. H. & Rossky, P. J. Molecular origins of fluorocarbon hydrophobicity. Proc. Natl Acad. Sci. Statele Unite ale Americii 107, 13603-13607 (2010).

    Articol 
    CAS 

    Google Academic
     

  • Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable ‘liquid Teflon’ for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322-2323 (2004).

    Articol 
    CAS 

    Google Academic
     

  • Liao, S., He, Y., Chu, Y., Liao, H. & Wang, Y. Solvent-resistant and fully recyclable perfluoropolyether-based elastomer for microfluidic chip fabrication. J. Mater. Chim. A 7, 16249-16256 (2019).

    Articol 
    CAS 

    Google Academic
     

  • Liu, J. et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 11, 3362 (2020).

    Articol 
    CAS 

    Google Academic
     

  • Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. ing. 3, 58-68 (2019).

    Articol 
    CAS 

    Google Academic
     

  • Qiang, Y. et al. Crosstalk in polymer microelectrode arrays. Nano Res. 14, 3240-3247 (2021).

    Articol 
    CAS 

    Google Academic
     

  • Fang, H. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl Acad. Sci. Statele Unite ale Americii 113, 11682-11687 (2016).

    Articol 
    CAS 

    Google Academic
     

  • Grancarić, A. M. et al. Conductive polymers for smart textile applications. J. Ind. Text. 48, 612-642 (2018).

    Articol 

    Google Academic
     

  • Shoa, T., Mirfakhrai, T. & Madden, J. D. Electro-stiffening in polypyrrole films: dependence of Young’s modulus on oxidation state, load and frequency. Synth. Met. 160, 1280-1286 (2010).

    Articol 
    CAS 

    Google Academic
     

  • Kim, Y. H. et al. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post‐treatment for ITO‐free organic solar cells. Adv. Funct. Mater. 21, 1076-1081 (2011).

    Articol 
    CAS 

    Google Academic
     

  • Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Pr. Mater. 3, 125-142 (2018).

    Articol 
    CAS 

    Google Academic
     

  • Minisy, I. M., Bober, P., Šeděnková, I. & Stejskal, J. Methyl red dye in the tuning of polypyrrole conductivity. Polimer 207, 122854 (2020).

    Articol 
    CAS 

    Google Academic
     

  • Matsuhisa, N. et al. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat. Mater. 16, 834-840 (2017).

    Articol 
    CAS 

    Google Academic
     

  • Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Ştiinţă 321, 1468-1472 (2008).

    Articol 
    CAS 

    Google Academic
     

  • Qu, J., Ouyang, L., Kuo, C.-C. & Martin, D. C. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomater. 31, 114-121 (2016).

    Articol 
    CAS 

    Google Academic
     

  • Matsuhisa, N., Chen, X., Bao, Z. & Someya, T. Materials and structural designs of stretchable conductors. Chim. Soc. Rev. 48, 2946-2966 (2019).

    Articol 
    CAS 

    Google Academic
     

  • Tringides, C. M. et al. Viscoelastic surface electrode arrays to interface with viscoelastic tissues. Nat. Nanotehnologia. 16, 1019-1029 (2021).

    Articol 
    CAS 

    Google Academic
     

  • Yuk, H., Lu, B. și Zhao, X. Hidrogel bioelectronics. Chim. Soc. Rev. 48, 1642-1667 (2019).

    Articol 
    CAS 

    Google Academic
     

  • Le Floch, P. et al. Fundamental limits to the electrochemical impedance stability of dielectric elastomers in bioelectronics. Nano Lett. 20, 224-233 (2020).

    Articol 

    Google Academic
     

  • Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590-603 (2020).

    Articol 
    CAS 

    Google Academic
     

  • Le Floch, P., Meixuanzi, S., Tang, J., Liu, J. & Suo, Z. Stretchable seal. ACS Appl. Mater. Interfețe 10, 27333-27343 (2018).

    Articol 

    Google Academic
     

  • Le Floch, P. et al. Wearable and washable conductors for active textiles. ACS Appl. Mater. Interfețe 9, 25542-25552 (2017).

    Articol 

    Google Academic
     

  • Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).

  • Olson, K. R. et al. Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery applications. Polimer 100, 126-133 (2016).

    Articol 
    CAS 

    Google Academic
     

  • Timachova, K. et al. Mechanism of ion transport in perfluoropolyether electrolytes with a lithium salt. Materie moale 13, 5389-5396 (2017).

    Articol 
    CAS 

    Google Academic
     

  • Barrer, R. Permeability of organic polymers. J. Chem. Soc. Faraday Trans. 35, 644-648 (1940).

    Articol 

    Google Academic
     

  • Van Amerongen, G. Influence of structure of elastomers on their permeability to gases. J. Polym. Sci. 5, 307-332 (1950).

    Articol 

    Google Academic
     

  • Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polim. Sci. 39, 1-42 (2014).

    Articol 
    CAS 

    Google Academic
     

  • George, S. C., Knörgen, M. & Thomas, S. Effect of nature and extent of crosslinking on swelling and mechanical behavior of styrene–butadiene rubber membranes. J. Membrul. Sci. 163, 1-17 (1999).

  • Vitale, A. et al. Direct photolithography of perfluoropolyethers for solvent-resistant microfluidics. Langmuir 29, 15711-15718 (2013).

    Articol 
    CAS 

    Google Academic
     

  • Gent, A. N. Fracture mechanics of adhesive bonds. Rubber Chem. Technol. 47, 202-212 (1974).

    Articol 
    CAS 

    Google Academic
     

  • Wang, Y., Yin, T. & Suo, Z. Polyacrylamide hydrogels. III. Lap shear and peel. J. Mech. Fiz. Solide 150, 104348 (2021).

    Articol 
    CAS 

    Google Academic
     

  • Lacour, S. P., Jones, J., Wagner, S., Teng, L. & Zhigang, S. Stretchable interconnects for elastic electronic surfaces. Proc. IEEE 93, 1459-1467 (2005).

    Articol 
    CAS 

    Google Academic
     

  • Li, T., Huang, Z., Suo, Z., Lacour, S. P. & Wagner, S. Stretchability of thin metal films on elastomer substrates. Aplic. Fizic. Lett. 85, 3435-3437 (2004).

    Articol 
    CAS 

    Google Academic
     

  • Li, T., Suo, Z., Lacour, S. P. & Wagner, S. Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J. Mater. Res. 20, 3274-3277 (2005).

    Articol 
    CAS 

    Google Academic
     

  • Yuk, H. et al. 3D printing of conducting polymers. Nat. Commun. 11, 1604 (2020).

    Articol 
    CAS 

    Google Academic
     

  • Minev, IR și colab. Dura mater electronică pentru interfețe neuronale multimodale pe termen lung. Ştiinţă 347, 159-163 (2015).

    Articol 
    CAS 

    Google Academic
     

  • Vachicouras, N. et al. Microstructured thin-film electrode technology enables proof of concept of scalable, soft auditory brainstem implants. Știință. Traducere Med. 11, eaax9487 (2019).

    Articol 

    Google Academic
     

  • Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Ştiinţă 372, eabf4588 (2021).

    Articol 
    CAS 

    Google Academic
     

  • Guan, S. et al. Elastocapillary self-assembled neurotassels for stable neural activity recordings. Știință. Adv. 5, eaav2842 (2019).

    Articol 
    CAS 

    Google Academic
     

  • Cea, C. et al. Enhancement-mode ion-based transistor as a comprehensive interface and real-time processing unit for in vivo electrophysiology. Nat. Mater. 19, 679-686 (2020).

    Articol 
    CAS 

    Google Academic
     

  • Lu, Chi et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits. Știință. Adv. 3, e1600955 (2017).

    Articol 

    Google Academic
     

  • Li, L. et al. Integrated flexible chalcogenide glass photonic devices. Nat. Foton. 8, 643-649 (2014).

  • Li, S., Su, Y. & Li, R. Splitting of the neutral mechanical plane depends on the length of the multi-layer structure of flexible electronics. Proc. R. Soc. A 472, 20160087 (2016).

    Articol 

    Google Academic
     

  • Kim, M.-G., Brown, D. K. & Brand, O. Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nat. Commun. 11, 1002 (2020).

    Articol 
    CAS 

    Google Academic
     

  • Morin, F., Chabanas, M., Courtecuisse, H. & Payan, Y. in Biomechanics of Living Organs: Hyperelastic Constitutive Laws for Finite Element Modeling (eds Payan, Y. & Ohayon, J.) 127–146 (Elsevier, 2017).

  • Stalder, A. F., Kulik, G., Sage, D., Barbieri, L. & Hoffmann, P. A snake-based approach to accurate determination of both contact points and contact angles. Coloizii Surf. A 286, 92-103 (2006).

  • Zhao, S. et al. Graphene encapsulated copper microwires as highly MRI compatible neural electrodes. Nano Lett. 16, 7731-7738 (2016).

    Articol 
    CAS 

    Google Academic
     

  • Schrödinger Release 2021-2: Maestro (Schrödinger Inc., 2021).

  • Harder, E. et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J. Chem. Teoria calculului. 12, 281-296 (2016).

    Articol 
    CAS 

    Google Academic
     

  • Bowers, K. J. et al. Scalable algorithms for molecular dynamics simulations on commodity clusters. In SC ’06: Proc. 2006 ACM/IEEE Conference on Supercomputing 43 (IEEE, 2006).

  • Timestamp-ul:

    Mai mult de la Natură Nanotehnologia