उच्च तापीय-चालकता वाले हीरे के सब्सट्रेट का उपयोग करके कुशल गर्मी अपव्यय पेरोसाइट लेजर

उच्च तापीय-चालकता वाले हीरे के सब्सट्रेट का उपयोग करके कुशल गर्मी अपव्यय पेरोसाइट लेजर

स्रोत नोड: 2585344

होम > दबाएँ > Efficient heat dissipation perovskite lasers using a high-thermal-conductivity diamond substrate

The figure shows the schematic of the proposed optically pumped MAPbI3 whispering gallery mode (WGM) laser comprising a triangular MAPbI3 nanoplatelet, a SiO2 gap layer, and a diamond substrate. CREDIT
©Science China Press
The figure shows the schematic of the proposed optically pumped MAPbI3 whispering gallery mode (WGM) laser comprising a triangular MAPbI3 nanoplatelet, a SiO2 gap layer, and a diamond substrate. CREDIT
© विज्ञान चीन प्रेस

सार:
Perovskite lasers have rapidly achieved progress in developing continuous-wave excited lasing from a femtosecond pulse excited lasing, which is considered a critical step towards electrically excited lasing. After continuous-wave lasing at room temperature, the next goal is to realize electrically driven lasing. In commercially available electric injection lasers, traditional epitaxial grown single crystal semiconductors with both large thermal conductivity κ and high charge carrier mobility m usually exhibit small resistive heating under large current flow. While perovskites possess large and balanced charge carrier mobilities, they suffer from small κ values. The thermal conductivity of MAPbI3 is 1-3 W m−1 K−1, which is inferior to that of GaAs (50 W m−1 K−1). Hence, heat converted from energy loss through nonradiative pathways cannot be effectively dissipated. This failure will increase the lasing threshold as carriers occupy a broader energy range at a higher temperature, diluting the population inversion of any given transition along with other problems such as degradation and heat-induced defects. The lowest electric excitation threshold of a distributed-feedback (DFB) perovskite laser would be as high as 24 mA cm−2. Moreover, owing to high current injection in conventional perovskite light-emitting diode architectures used for laser devices, the external quantum efficiency would be significantly restricted under high current injection conditions owing to Joule heating. Hence, heat management is a bottleneck for developing perovskite-based electrically driven lasers.

उच्च तापीय-चालकता वाले हीरे के सब्सट्रेट का उपयोग करके कुशल गर्मी अपव्यय पेरोसाइट लेजर


Beijing, China | Posted on April 14th, 2023

In this light, a group of researchers, including Prof. Guohui Li, Prof. Shengwang Yu, Prof. Yanxia Cui of Taiyuan University of Technology, and Prof. Kaibo Zheng of Lund University, demonstrated a perovskite nanoplatelet laser on a diamond substrate that can efficiently dissipate heat generated during optical pumping. The demonstrated laser features a Q factor of ~1962, a lasing threshold of 52.19 μJ cm−2. Tight optical confinement is also realized by introducing a thin SiO2 gap layer between nanoplatelets and the diamond substrate. Electric field distributions inside the structures shows that a wide SiO2 gap of 200 nm in thickness produces evidently less leakage field in the diamond substrate, simultaneously proposing better mode confinement within the MAPbI3 nanoplatelet. They evaluated the heat dissipation in perovskite nanoplatelet lasers on the diamond substrate by temperature variations under optical pumping conditions. The laser features a low pump-density-dependent temperature sensitivity (~0.56 ± 0.01 K cm2 μJ−1) through the incorporation of the diamond substrate. The sensitivity is one to two orders of magnitude lower than the values for previously reported perovskite nanowire lasers on glass substrates. The high-thermal-conductivity diamond substrate enables the nanoplatelet laser to operate at a high pump density. The study could inspire the development of electrically driven perovskite lasers. This work was published in SCIENCE CHINA Materials (https://doi.org/10.1007/s40843-022-2355-6)

This work was supported by the National Natural Science Foundation of China (U21A20496, 61922060, 61775156, 61805172,12104334, 62174117, and 61905173), the Key Research and Development Program of Shanxi Province (202102150101007), Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering Program (2022SX-TD020), the Natural Science Foundation of Shanxi Province (20210302123154 and 20210302123169), the Research Project Supported by Shanxi Scholarship Council of China (2021-033), the Research Project Supported by Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering (2021SX-FR008), and the Introduction of Talents Special Project of Lvliang City (Rc2020206 and Rc2020207). Guohui Li also acknowledges the support from China Scholarship Council (202006935009).

####

अधिक जानकारी के लिए, कृपया क्लिक करें यहाँ उत्पन्न करें

संपर्क:
मीडिया संपर्क

बेई यानो
विज्ञान चीन प्रेस
विशेषज्ञ संपर्क

Guohui Li
ताइयुआन प्रौद्योगिकी विश्वविद्यालय

कॉपीराइट © विज्ञान चीन प्रेस

अगर आपके पास कोई टिप्पणी है, तो कृपया Contact हमें.

न्यूज़ रिलीज़ के जारीकर्ता, न कि 7 वेव, इंक। या नैनो टेक्नोलॉजी नाउ, सामग्री की सटीकता के लिए पूरी तरह से जिम्मेदार हैं।

बुकमार्क:
स्वादिष्ट डिग Newsvine गूगल याहू रेडिट मैगनोलियाकॉम मोड़ना फेसबुक

संबंधित कड़ियाँ

पेपर:

संबंधित समाचार प्रेस

समाचार और सूचना

पहिये जैसे धात्विक गुच्छों का नया परिवार अद्वितीय गुण प्रदर्शित करता है अप्रैल 14th, 2023

नैनोबायोटेक्नोलॉजी: कैसे नैनो सामग्री जैविक और चिकित्सा समस्याओं को हल कर सकती है अप्रैल 14th, 2023

बायोसेंसर प्रौद्योगिकी में नए विकास: नैनो सामग्री से लेकर कैंसर का पता लगाने तक अप्रैल 14th, 2023

आईओपी पब्लिशिंग ने विशेष क्वांटम संग्रह और दो प्रतिष्ठित क्वांटम पुरस्कारों के विजेताओं की घोषणा के साथ विश्व क्वांटम दिवस मनाया अप्रैल 14th, 2023

पेरोव्स्काइट्स

सीसा रहित पेरोसाइट्स तैयार करने के लिए एक सार्वभौमिक एचसीएल-सहायक पाउडर-टू-पाउडर रणनीति मार्च 24th, 2023

पर्कोव्साइट सौर सेलों की स्थिरता अगले मील के पत्थर तक पहुँचती है जनवरी 27th, 2023

पॉलिमर पी-डोपिंग पेरोसाइट सौर सेल स्थिरता में सुधार करता है जनवरी 20th, 2023

नई विधि पेरोसाइट सौर कोशिकाओं के साथ समस्या का समाधान करती है: एनआरईएल शोधकर्ता विकास दृष्टिकोण प्रदान करते हैं जो दक्षता, स्थिरता को बढ़ाता है दिसम्बर 29th, 2022

संभव वायदा

पहिये जैसे धात्विक गुच्छों का नया परिवार अद्वितीय गुण प्रदर्शित करता है अप्रैल 14th, 2023

डायमंड कट प्रिसिशन: न्यूट्रॉन प्रयोग और क्वांटम सूचना विज्ञान के लिए डायमंड सेंसर विकसित करने के लिए इलिनोइस विश्वविद्यालय अप्रैल 14th, 2023

यांत्रिक ऊर्जा को पसंदीदा दिशा में प्रवाहित करना अप्रैल 14th, 2023

इम्प्लांटेबल डिवाइस अग्नाशय के ट्यूमर को सिकोड़ता है: इंट्राटूमोरल इम्यूनोथेरेपी के साथ अग्नाशय के कैंसर को कम करना अप्रैल 14th, 2023

ऑप्टिकल कंप्यूटिंग / फोटोनिक कंप्यूटिंग

डेटा को अब प्रकाश की गति से संसाधित किया जा सकता है! अप्रैल 14th, 2023

रिकॉर्ड गति पर ऑप्टिकल स्विचिंग अल्ट्राफास्ट, लाइट-आधारित इलेक्ट्रॉनिक्स और कंप्यूटर के लिए द्वार खोलती है: मार्च 24th, 2023

लाइट डीप लर्निंग से मिलती है: नेक्स्ट-जेन एआई के लिए पर्याप्त तेजी से कंप्यूटिंग मार्च 24th, 2023

नया अध्ययन अल्ट्राफास्ट 2डी उपकरणों के लिए दरवाजा खोलता है जो गैर-संतुलन एक्सिटोन सुपरडिफ्यूजन का उपयोग करते हैं फ़रवरी 10th, 2023

खोजों

डेटा को अब प्रकाश की गति से संसाधित किया जा सकता है! अप्रैल 14th, 2023

डायमंड कट प्रिसिशन: न्यूट्रॉन प्रयोग और क्वांटम सूचना विज्ञान के लिए डायमंड सेंसर विकसित करने के लिए इलिनोइस विश्वविद्यालय अप्रैल 14th, 2023

यांत्रिक ऊर्जा को पसंदीदा दिशा में प्रवाहित करना अप्रैल 14th, 2023

इम्प्लांटेबल डिवाइस अग्नाशय के ट्यूमर को सिकोड़ता है: इंट्राटूमोरल इम्यूनोथेरेपी के साथ अग्नाशय के कैंसर को कम करना अप्रैल 14th, 2023

घोषणाएं

नैनोबायोटेक्नोलॉजी: कैसे नैनो सामग्री जैविक और चिकित्सा समस्याओं को हल कर सकती है अप्रैल 14th, 2023

बायोसेंसर प्रौद्योगिकी में नए विकास: नैनो सामग्री से लेकर कैंसर का पता लगाने तक अप्रैल 14th, 2023

आईओपी पब्लिशिंग ने विशेष क्वांटम संग्रह और दो प्रतिष्ठित क्वांटम पुरस्कारों के विजेताओं की घोषणा के साथ विश्व क्वांटम दिवस मनाया अप्रैल 14th, 2023

डेटा को अब प्रकाश की गति से संसाधित किया जा सकता है! अप्रैल 14th, 2023

साक्षात्कार / पुस्तक समीक्षा / निबंध / रिपोर्ट / पॉडकास्ट / पत्रिका / श्वेत पत्र / पोस्टर

पहिये जैसे धात्विक गुच्छों का नया परिवार अद्वितीय गुण प्रदर्शित करता है अप्रैल 14th, 2023

डायमंड कट प्रिसिशन: न्यूट्रॉन प्रयोग और क्वांटम सूचना विज्ञान के लिए डायमंड सेंसर विकसित करने के लिए इलिनोइस विश्वविद्यालय अप्रैल 14th, 2023

यांत्रिक ऊर्जा को पसंदीदा दिशा में प्रवाहित करना अप्रैल 14th, 2023

इम्प्लांटेबल डिवाइस अग्नाशय के ट्यूमर को सिकोड़ता है: इंट्राटूमोरल इम्यूनोथेरेपी के साथ अग्नाशय के कैंसर को कम करना अप्रैल 14th, 2023

फोटोनिक्स / प्रकाशिकी / लेजर

डेटा को अब प्रकाश की गति से संसाधित किया जा सकता है! अप्रैल 14th, 2023

रिकॉर्ड गति पर ऑप्टिकल स्विचिंग अल्ट्राफास्ट, लाइट-आधारित इलेक्ट्रॉनिक्स और कंप्यूटर के लिए द्वार खोलती है: मार्च 24th, 2023

लाइट डीप लर्निंग से मिलती है: नेक्स्ट-जेन एआई के लिए पर्याप्त तेजी से कंप्यूटिंग मार्च 24th, 2023

स्टैनफोर्ड के शोधकर्ताओं ने तरल पदार्थों में बैक्टीरिया की पहचान करने के लिए एक नया तरीका विकसित किया: एक पुराने इंकजेट प्रिंटर और एआई-असिस्टेड इमेजिंग में प्रौद्योगिकी का एक अभिनव अनुकूलन रक्त, अपशिष्ट जल और अन्य में बैक्टीरिया को खोजने का एक तेज़, सस्ता तरीका है। मार्च 3rd, 2023

समय टिकट:

से अधिक नैनो टेक्नोलॉजी अब ताजा खबर

नैनोटेक्नोलॉजी नाउ - प्रेस विज्ञप्ति: पर्ड्यू के शोधकर्ताओं ने सुपरकंडक्टिव छवियों की खोज की जो वास्तव में 3डी और विकार-संचालित भग्न हैं

स्रोत नोड: 2649544
समय टिकट: 14 मई 2023

नई विधि पेरोसाइट सौर कोशिकाओं के साथ समस्या का समाधान करती है: एनआरईएल शोधकर्ता विकास दृष्टिकोण प्रदान करते हैं जो दक्षता, स्थिरता को बढ़ाता है

स्रोत नोड: 1790804
समय टिकट: दिसम्बर 30, 2022

नैनोटेक्नोलॉजी नाउ - प्रेस विज्ञप्ति: ग्राफीन के रिबन सामग्री की क्षमता को बढ़ाते हैं: कोलंबिया में विकसित एक नई तकनीक स्तरित 2डी सामग्रियों में मोड़ कोण और तनाव का एक व्यवस्थित मूल्यांकन प्रदान करती है

स्रोत नोड: 2825468
समय टिकट: अगस्त 16, 2023

नैनोटेक्नोलॉजी नाउ - प्रेस विज्ञप्ति: एसएलएएस टेक्नोलॉजी बायोप्रिंटिंग के भविष्य में अंतर्दृष्टि प्रदान करती है: एसएलएएस टेक्नोलॉजी विशेषांक, बायोप्रिंटिंग द फ्यूचर, चिकित्सा में बायोप्रिंटिंग की परिवर्तनकारी क्षमता की जांच करता है

स्रोत नोड: 2750712
समय टिकट: जुलाई 5, 2023

नैनोटेक्नोलॉजी नाउ - प्रेस विज्ञप्ति: नया उत्प्रेरक लाखों इंजनों से मीथेन प्रदूषण को नाटकीय रूप से कम कर सकता है: शोधकर्ता प्राकृतिक गैस जलाने वाले इंजनों के निकास से शक्तिशाली ग्रीनहाउस गैस को हटाने का एक तरीका प्रदर्शित करते हैं।

स्रोत नोड: 2785112
समय टिकट: जुलाई 26, 2023

शोर कम करते हुए वैज्ञानिक क्वांटम संकेतों को बढ़ावा देते हैं: क्वांटम सिस्टम में एक व्यापक आवृत्ति बैंडविड्थ पर "निचोड़ने" का शोर तेजी से और अधिक सटीक क्वांटम माप का कारण बन सकता है

स्रोत नोड: 1954629
समय टिकट: फ़रवरी 13, 2023

टीम बायोसेंसिंग सहित द्वि-आयामी संक्रमण धातु चाकोजेनाइड्स महत्वपूर्ण जैव चिकित्सा अनुप्रयोग का अध्ययन करती है

स्रोत नोड: 1777872
समय टिकट: दिसम्बर 20, 2022