IL-12 mRNA inhaleeritav ekstratsellulaarne vesiikulite kohaletoimetamine kopsuvähi raviks ja süsteemse immuunsuse edendamiseks – Nature Nanotechnology

IL-12 mRNA inhaleeritav ekstratsellulaarne vesiikulite kohaletoimetamine kopsuvähi raviks ja süsteemse immuunsuse edendamiseks – looduse nanotehnoloogia

Allikasõlm: 3056222
  • Wolchok, J. D. et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 377, 1345 – 1356 (2017).

    Artikkel 
    CAS 

    Google Scholar
     

  • Ito, A., Kondo, S., Tada, K. & Kitano, S. Clinical development of immune checkpoint inhibitors. BioMed. Res. Int. 2015, 605478 (2015).

    Artikkel 

    Google Scholar
     

  • Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Vähirakud 31, 311 – 325 (2017).

    Artikkel 
    CAS 

    Google Scholar
     

  • Shi, Y. et al. Next-generation immunotherapies to improve anticancer immunity. Ees. Pharmacol. 11, 566401 (2020).

    Artikkel 
    CAS 

    Google Scholar
     

  • Mirlekar, B. & Pylayeva-Gupta, Y. IL-12 family cytokines in cancer and immunotherapy. Vähid (Basel). 13, 167 (2021).

    Artikkel 
    CAS 

    Google Scholar
     

  • Del Vecchio, M. et al. Interleukin-12: biological properties and clinical application. Clin. Cancer Res. 13, 4677 – 4685 (2007).

    Artikkel 

    Google Scholar
     

  • Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133 – 146 (2003).

    Artikkel 
    CAS 

    Google Scholar
     

  • Nguyen, K. G. et al. Localized interleukin-12 for cancer immunotherapy. Esiosa immunol. 11, 575597 (2020).

    Artikkel 
    CAS 

    Google Scholar
     

  • Moynihan, K. D. et al. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22, 1402 – 1410 (2016).

    Artikkel 
    CAS 

    Google Scholar
     

  • Mace, T. A. et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Hea 67, 320 – 332 (2018).

    Artikkel 
    CAS 

    Google Scholar
     

  • Agarwal, Y. et al. Intratumourally injected alum-tethered cytokines elicit potent and safer local and systemic anticancer immunity. Nat. Biomed. Eng. 6, 129 – 143 (2022).

    Artikkel 
    CAS 

    Google Scholar
     

  • Jorgovanovic, D., Song, M., Wang, L. & Zhang, Y. Roles of IFN-γ in tumor progression and regression: a review. Biomark. Res. 8, 49 (2020).

    Artikkel 

    Google Scholar
     

  • Hotz, C. et al. MRNA-ga kodeeritud tsütokiinide lokaalne kohaletoimetamine soodustab kasvajavastast immuunsust ja kasvaja likvideerimist mitme prekliinilise kasvaja mudeli puhul. Sci. Tõlk. Med. 13, eabc7804 (2021).

    Artikkel 
    CAS 

    Google Scholar
     

  • Li, Y. et al. Multifunktsionaalsed onkolüütilised nanoosakesed edastavad isepaljunevat IL-12 RNA-d, et kõrvaldada väljakujunenud kasvajad ja luua süsteemne immuunsus. Nat. Vähk 1, 882 – 893 (2020).

    Artikkel 
    CAS 

    Google Scholar
     

  • Liu, JQ et al. IL-12 ja IL-27 mRNA intratumoraalne manustamine, kasutades lipiidide nanoosakesi vähi immunoteraapiaks. J. Kontroll. Vabasta 345, 306 – 313 (2022).

    Artikkel 
    CAS 

    Google Scholar
     

  • Liu, M. A. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaktsiinid 7, 37 (2019).

    Artikkel 
    CAS 

    Google Scholar
     

  • Sangro, B. et al. Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J. Clin. Oncol. 22, 1389 – 1397 (2004).

    Artikkel 
    CAS 

    Google Scholar
     

  • Qiu, N. et al. Tumor-associated macrophage and tumor-cell dually transfecting polyplexes for efficient interleukin-12 cancer gene therapy. Adv. Mater. 33, e2006189 (2021).

    Artikkel 

    Google Scholar
     

  • Hewitt, S. L. et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin. Cancer Res. 26, 6284 – 6298 (2020).

    Artikkel 
    CAS 

    Google Scholar
     

  • Aslan, C. et al. Eksosoomid mRNA kohaletoimetamiseks: uudne bioterapeutiline strateegia takistuste ja lootusega. BMC Biotechnol. 21, 20 (2021).

    Artikkel 
    CAS 

    Google Scholar
     

  • Popowski, K.D. et al. Inhaleeritavad kuivpulber-mRNA vaktsiinid, mis põhinevad rakuvälistel vesiikulitel. küsimus 5, 2960 – 2974 (2022).

    Artikkel 
    CAS 

    Google Scholar
     

  • O’Brien, K., Breyne, K., Ughetto, S., Laurent, L. C. & Breakefield, X. O. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev Mol. Cell Biol. 21, 585 – 606 (2020).

    Artikkel 

    Google Scholar
     

  • Zickler, A. M. & El Andaloussi, S. Functional extracellular vesicles aplenty. Nat. Biomed. Eng. 4, 9 – 11 (2020).

    Artikkel 

    Google Scholar
     

  • Cheng, K. & Kalluri, R. Guidelines for clinical translation and commercialization of extracellular vesicles and exosomes based therapeutics. Extracell. Vesicle 2, 100029 (2023).

    Artikkel 

    Google Scholar
     

  • Dinh, P. C. et al. Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat. Kommuun. 11, 1064 (2020).

    Artikkel 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Rekombinantse SARS-CoV-2 retseptorit siduva domeeniga kaunistatud eksosoomid inhaleeritava COVID-19 vaktsiinina. Nat. Biomed. Eng. 6, 791 – 805 (2022).

    Artikkel 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Cell-mimicking nanodecoys neutralize SARS-CoV-2 and mitigate lung injury in a non-human primate model of COVID-19. Nat. Nanotehnoloogia. 16, 942 – 951 (2021).

    Artikkel 
    CAS 

    Google Scholar
     

  • Douguet, L. et al. A small-molecule P2RX7 activator promotes anti-tumor immune responses and sensitizes lung tumor to immunotherapy. Nat. Kommuun. 12, 653 (2021).

    Artikkel 
    CAS 

    Google Scholar
     

  • Casanova-Acebes, M. et al. Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. loodus 595, 578 – 584 (2021).

    Artikkel 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. Põhjalikud toksilisuse ja immunogeensuse uuringud näitavad pärast HEK293T rakkudest pärinevate ekstratsellulaarsete vesiikulite pidevat manustamist hiirtel minimaalseid toimeid. J. Extracell. Vesiikulid 6, 1324730 (2017).

    Artikkel 

    Google Scholar
     

  • Mizrak, A. et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol. Seal. 21, 101 – 108 (2013).

    Artikkel 
    CAS 

    Google Scholar
     

  • Kojima, R. et al. Implanteeritud rakkude poolt toodetud disainitud eksosoomid annavad intratserebraalselt terapeutilist lasti Parkinsoni tõve raviks. Nat. Kommuun. 9, 1305 (2018).

    Artikkel 

    Google Scholar
     

  • Usman, WM et al. Tõhus RNA ravimite kohaletoimetamine punaste vereliblede rakuväliste vesiikulite abil. Nat. Kommuun. 9, 2359 (2018).

    Artikkel 

    Google Scholar
     

  • Lieschke, G. J., Rao, P. K., Gately, M. K. & Mulligan, R. C. Bioactive murine and human interleukin-12 fusion proteins which retain antitumor activity in vivo. Nat. Biotehnoloogia. 15, 35 – 40 (1997).

    Artikkel 
    CAS 

    Google Scholar
     

  • Tsai, S. J. et al. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS-CoV-2 immunity. J. Biol. Chem. 297, 101266 (2021).

    Artikkel 
    CAS 

    Google Scholar
     

  • Li, B. et al. Nanoosakeste kombinatoorne disain kopsu mRNA kohaletoimetamiseks ja genoomi redigeerimiseks. Nat. Biotehnoloogia. 41, 1410 – 1415 (2023).

    Artikkel 
    CAS 

    Google Scholar
     

  • Gao, S., Wang, L., Liu, W., Wu, Y. & Yuan, Z. The synergistic effect of homocysteine and lipopolysaccharide on the differentiation and conversion of raw264.7 macrophages. J. Inflamm. 11, 13 (2014).

    Artikkel 

    Google Scholar
     

  • Mei, X. et al. An inhaled bioadhesive hydrogel to shield non-human primates from SARS-CoV-2 infection. Nat. Mater. 22, 903 – 912 (2023).

    Artikkel 
    CAS 

    Google Scholar
     

  • Olivo Pimentel, V. et al. Releasing the brakes of tumor immunity with anti-PD-L1 and pushing its accelerator with L19-IL2 cures poorly immunogenic tumors when combined with radiotherapy. J. Immunother. Vähk 9, e001764 (2021).

    Artikkel 

    Google Scholar
     

  • Leonard, J. P. et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Veri 90, 2541 – 2548 (1997).

    CAS 

    Google Scholar
     

  • Chiocca, E. A. et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial. Sci. Tõlk. Med. 11, eaaw5680 (2019).

    Artikkel 

    Google Scholar
     

  • Liu, Y. et al. Armored inducible expression of IL-12 enhances antitumor activity of glypican-3-targeted chimeric antigen receptor-engineered T cells in hepatocellular carcinoma. J. Immunol. 203, 198 – 207 (2019).

    Artikkel 
    CAS 

    Google Scholar
     

  • Zhu, M. L., Nagavalli, A. & Su, M. A. Aire deficiency promotes TRP-1-specific immune rejection of melanoma. Cancer Res. 73, 2104 – 2116 (2013).

    Artikkel 
    CAS 

    Google Scholar
     

  • Lizotte, P. H. et al. In situ vaktsineerimine lehmaherne mosaiikviiruse nanoosakestega pärsib metastaatilist vähki. Nat. Nanotehnoloogia. 11, 295 – 303 (2015).

    Artikkel 

    Google Scholar
     

  • Gollob, J. A. et al. Phase I trial of twice-weekly intravenous interleukin 12 in patients with metastatic renal cell cancer or malignant melanoma: ability to maintain IFN-gamma induction is associated with clinical response. Clin. Cancer Res. 6, 1678 – 1692 (2000).

    CAS 

    Google Scholar
     

  • Smyth, M. J., Taniguchi, M. & Street, S. E. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165, 2665 – 2670 (2000).

    Artikkel 
    CAS 

    Google Scholar
     

  • Xue, D. et al. A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors. Sci. Immunol. 7, eabi6899 (2022).

    Artikkel 
    CAS 

    Google Scholar
     

  • Karin, N. Chemokines in the landscape of cancer immunotherapy: how they and their receptors can be used to turn cold tumors into hot ones? Vähk 13, 6317 (2021).

    Artikkel 
    CAS 

    Google Scholar
     

  • Jones, D. S. 2nd et al. Cell surface-tethered IL-12 repolarizes the tumor immune microenvironment to enhance the efficacy of adoptive T cell therapy. Sci. Adv. 8, eabi8075 (2022).

    Artikkel 
    CAS 

    Google Scholar
     

  • Rubinstein, M. P. et al. Ex vivo interleukin-12-priming during CD8(+) T cell activation dramatically improves adoptive T cell transfer antitumor efficacy in a lymphodepleted host. J. Am. Coll. Surg. 214, 700 – 707 (2012).

    Artikkel 

    Google Scholar
     

  • Müller, J. M. et al. In vivo induction of interferon gamma expression in grey horses with metastatic melanoma resulting from direct injection of plasmid DNA coding for equine interleukin 12. Schweiz Arch. Tierheilkd. 153, 509 – 513 (2011).

    Artikkel 

    Google Scholar
     

  • Goldszmid, R. S. et al. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Puutumatus 36, 1047 – 1059 (2012).

    Artikkel 
    CAS 

    Google Scholar
     

  • Kerkar, S. P. et al. Collapse of the tumor stroma is triggered by IL-12 induction of Fas. Mol. Seal. 21, 1369 – 1377 (2013).

    Artikkel 
    CAS 

    Google Scholar
     

  • Geall, AJ et al. Iseamplifitseerivate RNA vaktsiinide mitteviiruslik manustamine. Proc. Natl Acad. Sci. USA 109, 14604 – 14609 (2012).

    Artikkel 
    CAS 

    Google Scholar
     

  • Ajatempel:

    Veel alates Loodus Nanotehnoloogia