Quantum Rabi interferometri af bevægelse og stråling

Quantum Rabi interferometri af bevægelse og stråling

Kildeknude: 2691521

Kimin Park1,2, Petr Marek1, Ulrik L. Andersen2, og Radim Filip1

1Institut for Optik, Palacky University, 77146 Olomouc, Tjekkiet
2Center for Makroskopiske Kvantetilstande (bigQ), Institut for Fysik, Danmarks Tekniske Universitet, Bygning 307, Fysikvej, 2800 Kgs. Lyngby, Danmark

Finder du denne artikel interessant eller vil du diskutere? Scite eller efterlade en kommentar på SciRate.

Abstrakt

Den præcise bestemmelse af en forskydning af en mekanisk oscillator eller et mikrobølgefelt i en forudbestemt retning i faserummet kan udføres med henholdsvis fangede ioner eller superledende kredsløb ved at koble oscillatoren med ancilla qubits.

Gennem den kobling overføres forskydningsinformationen til qubits, som derefter udlæses. En utvetydig estimering af forskydning i en ukendt retning i faserummet er imidlertid ikke blevet forsøgt i sådanne oscillator-qubit-systemer. Her foreslår vi en hybrid oscillator-qubit interferometrisk opsætning til entydig estimering af faserumsforskydninger i en vilkårlig retning, baseret på mulige Rabi-interaktioner ud over den roterende bølgetilnærmelse. Ved at bruge et sådant hybrid Rabi-interferometer til kvanteregistrering viser vi, at ydeevnen er overlegen i forhold til dem, der opnås med single-mode estimeringsskemaer og et konventionelt interferometer baseret på Jaynes-Cummings-interaktioner. Desuden finder vi ud af, at følsomheden af ​​Rabi-interferometeret er uafhængig af den termiske besættelse af oscillatortilstanden, og derfor er det ikke nødvendigt at afkøle det til grundtilstanden før sensing. Vi udfører også en grundig undersøgelse af effekten af ​​qubit dephasing og oscillator termalisering. Vi finder, at interferometeret er ret robust og overgår forskellige benchmark-estimeringsskemaer selv for stor defasering og termalisering.

Vi har udviklet en ny hybrid oscillator-qubit interferometrisk opsætning, der muliggør entydig estimering af faserumsforskydninger i enhver retning, og forbedrer tidligere metoder, der var begrænset til forudbestemte retninger. Denne innovative tilgang, kaldet Rabi-interferometeret, tilbyder overlegen ydeevne sammenlignet med single-mode estimeringsskemaer og konventionelle interferometre. Især kræver det ikke afkøling af oscillatoren til jordtilstanden, og den forbliver robust, selv ved tilstedeværelse af qubit-affasning og oscillator-termalisering. Dette fremskridt inden for kvanteregistrering kan have betydelige konsekvenser for en række applikationer.

► BibTeX-data

► Referencer

[1] CL Degen, F. Reinhard og P. Cappellaro, "Quantum sensing" Reviews of Modern Physics 89, 035002 (2017).
https://​/​doi.org/​10.1103/​REVMODPHYS.89.035002/​

[2] Vittorio Giovannetti, Seth Lloyd og Lorenzo MacCone, "Advances in quantum metrology" Nature Photonics 5, 222-229 (2011).
https://​/​doi.org/​10.1038/​nphoton.2011.35

[3] Jasminder S Sidhuand Pieter Kok "Geometrisk perspektiv på kvanteparameterestimering" AVS Quantum Science 2, 014701 (2020).
https://​/​doi.org/​10.1116/​1.5119961

[4] Zeeshan Ahmed, Yuri Alexeev, Giorgio Apollinari, Asimina Arvanitaki, David Awschalom, Karl K. Berggren, Karl Van Bibber, Przemyslaw Bienias, Geoffrey Bodwin, Malcolm Boshier, Daniel Bowring, Davide Braga, Karen Byrum, Gustavo Cancelo, Gianpaolo Carosi, Tom Cecilo , Clarence Chang, Mattia Checchin, Sergei Chekanov, Aaron Chou, Aashish Clerk, Ian Cloet, Michael Crisler, Marcel Demarteau, Ranjan Dharmapalan, Matthew Dietrich, Junjia Ding, Zelimir Djurcic, John Doyle, James Fast, Michael Fazio, Peter Fierlinger, Hal Finkel, Patrick Fox, Gerald Gabrielse, Andrei Gaponenko, Maurice Garcia-Sciveres, Andrew Geraci, Jeffrey Guest, Supratik Guha, Salman Habib, Ron Harnik, Amr Helmy, Yuekun Heng, Jason Henning, Joseph Heremans, Phay Ho, Jason Hogan, Johannes Hubmayr, David Hume, Kent Irwin, Cynthia Jenks, Nick Karonis, Raj Kettimuthu, Derek Kimball, Jonathan King, Eve Kovacs, Richard Kriske, Donna Kubik, Akito Kusaka, Benjamin Lawrie, Konrad Lehnert, Paul Lett, Jonathan Lewis, Pavel Lougovski, Larry Lurio, Xuedan Ma, Edward May, Petra Merkel, Jessica Metcalfe, Antonino Miceli, Misun Min, Sandeep Miryala, John Mitchell, Vesna Mitrovic, Holger Mueller, Sae Woo Nam, Hogan Nguyen, Howard Nicholson, Andrei Nomerotski, Michael Norman, Kevin O'Brien, Roger O'Brient, Umeshkumar Patel, Bjoern Penning, Sergey Perverzev, Nicholas Peters, Raphael Pooser, Chrystian Posada, James Proudfoot, Tenzin Rabga, Tijana Rajh, Sergio Rescia, Alexander Romanenko, Roger Rusack, Monika Schleier-Smith, Keith Schwab, Julie Segal, Ian Shipsey, Erik Shirokoff, Andrew Sonnenschein, Valerie Taylor, Robert Tschirhart, Chris Tully, David Underwood, Vladan Vuletic, Robert Wagner, Gensheng Wang, Harry Weerts, Nathan Woollett, Junqi Xie, Volodymyr Yefremenko, John Zasadzinski , Jinlong Zhang, Xufeng Zhang og Vishnu Zutshi, "Quantum Sensing for High Energy Physics" (2018).
arXiv: 1803.11306

[5] Domenico D'Alessandro "Introduktion til kvantekontrol og dynamik" Chapman Hall/​CRC (2021).
https://​/​doi.org/​10.1201/​9781003051268

[6] S. Pirandola, BR Bardhan, T. Gehring, C. Weedbrook og S. Lloyd, "Advances in photonic quantum sensing" Nature Photonics 12, 724-733 (2018).
https:/​/​doi.org/​10.1038/​s41566-018-0301-6

[7] Xueshi Guo, Casper R. Breum, Johannes Borregaard, Shuro Izumi, Mikkel V. Larsen, Tobias Gehring, Matthias Christandl, Jonas S. Neergaard-Nielsen og Ulrik L. Andersen, "Distribueret kvantesansning i et kontinuerligt-variabelt entangled netværk" Naturfysik 2019 16:3 16, 281–284 (2019).
https://​/​doi.org/​10.1038/​s41567-019-0743-x

[8] BJ Lawrie, PD Lett, AM Marino og RC Pooser, "Quantum Sensing with Squeezed Light" ACS Photonics 6, 1307-1318 (2019).
https://​/​doi.org/​10.1021/​acsphotonics.9b00250

[9] Emanuele Polino, Mauro Valeri, Nicolò Spagnolo og Fabio Sciarrino, "Photonic quantum metrology" AVS Quantum Science 2, 024703 (2020).
https://​/​doi.org/​10.1116/​5.0007577

[10] Rafal Demkowicz-Dobrzański, Marcin Jarzyna og Jan KoÅ‚odyński, "Kapitel fire – Quantum Limits in Optical Interferometry" Elsevier (2015).
https://​/​doi.org/​10.1016/​bs.po.2015.02.003

[11] LIGO Scientific Collaborationand Jomfru Collaboration "Observation af gravitationsbølger fra en binær sort hul-fusion" Physical Review Letters 116, 061102 (2016).
https://​/​doi.org/​10.1103/​PhysRevLett.116.061102

[12] BP Abbott, R Abbott, TD Abbott og S Abraham et al.s, "Prospects for observation and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA" Living Rev Relativ (2020).
https:/​/​doi.org/​10.1007/​s41114-020-00026-9

[13] C. Lang, C. Eichler, L. Steffen, JM Fink, MJ Woolley, A. Blais og A. Wallraff, "Korrelationer, udelukkethed og sammenfiltring i Hong-Ou-Mandel eksperimenter ved mikrobølgefrekvenser" Nature Physics 9, 345– 348 (2013).
https://doi.org/​10.1038/​nphys2612

[14] Yvonne Y. Gao, Brian J. Lester, Yaxing Zhang, Chen Wang, Serge Rosenblum, Luigi Frunzio, Liang Jiang, SM Girvin og Robert J. Schoelkopf, "Programmable Interference between Two Microwave Quantum Memories" Physical Review X 8 (2018) .
https://​/​doi.org/​10.1103/​PhysRevX.8.021073

[15] Kai Bongs, Michael Holynski, Jamie Vovrosh, Philippe Bouyer, Gabriel Condon, Ernst Rasel, Christian Schubert, Wolfgang P. Schleich og Albert Roura, "Taking atom interferometric quantum sensors from the laboratory to real-world applications" Nature Reviews Physics 1, 731-739 (2019).
https:/​/​doi.org/​10.1038/​s42254-019-0117-4

[16] Alexander D. Cronin, Jörg Schmiedmayer og David E. Pritchard, "Optics and interferometry with atoms and molecules" Reviews of Modern Physics 81, 1051-1129 (2009).
https://​/​doi.org/​10.1103/​RevModPhys.81.1051

[17] Luca Pezzè, Augusto Smerzi, Markus K. Oberthaler, Roman Schmied og Philipp Treutlein, "Quantemetrology with nonclassical states of atomic ensembles" Reviews of Modern Physics 90 (2018).
https://​/​doi.org/​10.1103/​RevModPhys.90.035005

[18] Bing Chen, Cheng Qiu, Shuying Chen, Jinxian Guo, LQ Chen, ZY Ou og Weiping Zhang, "Atom-Light Hybrid Interferometer" Physical Review Letters 115, 043602 (2015).
https://​/​doi.org/​10.1103/​PhysRevLett.115.043602

[19] Mankei Tsangand Carlton M. Caves "Kohærent kvantestøjreduktion for optomekaniske sensorer" Fysisk. Rev. Lett. 105, 123601 (2010).
https://​/​doi.org/​10.1103/​PhysRevLett.105.123601

[20] Ali Motazedifard, A. Dalafi og MH Naderi, "Ultrapræcision kvantesansning og måling baseret på ikke-lineære hybride optomekaniske systemer indeholdende ultrakolde atomer eller atomart Bose-Einstein-kondensat" AVS Quantum Science 3, 24701 (2021).
https://doi.org/​10.1116/​5.0035952/​997321

[21] F. Bemani, O. Černotík, L. Ruppert, D. Vitali og R. Filip, "Force Sensing in an Optomechanical System with Feedback-Controlled In-Loop Light" Phys. Rev. Appl. 17, 034020 (2022).
https://​/​doi.org/​10.1103/​PhysRevApplied.17.034020

[22] DA Dalvit, RL Filho og F Toscano, "Kvantemetrologi ved Heisenberg-grænsen med ionfældebevægelseskompastilstande" New Journal of Physics 8, 276-276 (2006).
https:/​/​doi.org/​10.1088/​1367-2630/​8/​11/​276

[23] Kasper Duivenvoorden, Barbara M. Terhal og Daniel Weigand, "Single-mode displacement sensor" Phys. Rev. A 95, 012305 (2017).
https://​/​doi.org/​10.1103/​PhysRevA.95.012305

[24] Daniel Braun, Gerardo Adesso, Fabio Benatti, Roberto Floreanini, Ugo Marzolino, Morgan W. Mitchell og Stefano Pirandola, "Quantum-enhanced measurements without entanglement" Reviews of Modern Physics 90, 1-52 (2018).
https://​/​doi.org/​10.1103/​RevModPhys.90.035006

[25] Fabian Wolf, Chunyan Shi, Jan C. Heip, Manuel Gessner, Luca Pezzè, Augusto Smerzi, Marius Schulte, Klemens Hammerer og Piet O. Schmidt, "Motional Fock-tilstande for kvanteforstærkede amplitude- og fasemålinger med fangede ioner" Nature Kommunikation 10 (2019).
https:/​/​doi.org/​10.1038/​s41467-019-10576-4

[26] Katherine C. McCormick, Jonas Keller, Shaun C. Burd, David J. Wineland, Andrew C. Wilson og Dietrich Leibfried, "Kvanteforbedret sensing af en enkelt-ion mekanisk oscillator." Nature 572, 86–90 (2019).
https://​/​doi.org/​10.1038/​s41586-019-1421-y

[27] Shavindra P. Premaratne, FC Wellstood og BS Palmer, "Microwave photon Fock state generation by stimulated Raman adiabatic passage" Nature Communications 8 (2017).
https://​/​doi.org/​10.1038/​ncomms14148

[28] W. Wang, L. Hu, Y. Xu, K. Liu, Y. Ma, Shi Biao Zheng, R. Vijay, YP Song, LM Duan og L. Sun, "Converting Quasiclassical States into Arbitrary Fock State Superpositions in a Superledende kredsløb” Physical Review Letters 118 (2017).
https://​/​doi.org/​10.1103/​PhysRevLett.118.223604

[29] Wolfgang Pfaff, Christopher J. Axline, Luke D. Burkhart, Uri Vool, Philip Reinhold, Luigi Frunzio, Liang Jiang, Michel H. Devoret og Robert J. Schoelkopf, "Kontrolleret frigivelse af multifoton kvantetilstande fra en mikrobølgehulrumshukommelse" Nature Physics 13, 882-887 (2017).
https://doi.org/​10.1038/​nphys4143

[30] Mario F. Gely, Marios Kounalakis, Christian Dickel, Jacob Dalle, Rémy Vatré, Brian Baker, Mark D. Jenkins og Gary A. Steele, "Observation and stabilization of photonic Fock states in a hot radio-frequency resonator" Science 363, 1072-1075 (2019).
https://​doi.org/​10.1126/​science.aaw3101

[31] Yiwen Chu, Prashanta Kharel, Taekwan Yoon, Luigi Frunzio, Peter T. Rakich og Robert J. Schoelkopf, "Creation and control of multi-phonon Fock states in a bulk akustisk-bølgeresonator" Nature 563, 666-670 (2018) .
https:/​/​doi.org/​10.1038/​s41586-018-0717-7

[32] Dany Lachance-Quirion, Yutaka Tabuchi, Seiichiro Ishino, Atsushi Noguchi, Toyofumi Ishikawa, Rekishu Yamazaki og Yasunobu Nakamura, "Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet" Science Advances 3 (2017).
https://​/​doi.org/​10.1126/​sciadv.1603150

[33] SP Wolski, D. Lachance-Quirion, Y. Tabuchi, S. Kono, A. Noguchi, K. Usami og Y. Nakamura, "Dissipation-Based Quantum Sensing of Magnons with a Superconducting Qubit" Phys. Rev. Lett. 125, 117701 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.125.117701

[34] Dany Lachance-Quirion, Samuel Piotr Wolski, Yutaka Tabuchi, Shingo Kono, Koji Usami og Yasunobu Nakamura, "Entanglement-baseret enkeltskudsdetektion af en enkelt magnon med en superledende qubit" Science 367, 425-428 (2020).
https://​doi.org/​10.1126/​science.aaz9236

[35] Akash V. Dixit, Srivatsan Chakram, Kevin He, Ankur Agrawal, Ravi K. Naik, David I. Schuster og Aaron Chou, "Searching for Dark Matter with a Superconducting Qubit" Phys. Rev. Lett. 126, 141302 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.126.141302

[36] Zhixin Wang, Mingrui Xu, Xu Han, Wei Fu, Shruti Puri, SM Girvin, Hong X. Tang, S. Shankar og MH Devoret, "Quantum Microwave Radiometry with a Superconducting Qubit" Phys. Rev. Lett. 126, 180501 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.126.180501

[37] M. Kristen, A. Schneider, A. Stehli, T. Wolz, S. Danilin, HS Ku, J. Long, X. Wu, R. Lake, DP Pappas, AV Ustinov og M. Weides, "Amplitude og frekvens sansning af mikrobølgefelter med en superledende transmon qudit” npj Quantum Information 2020 6:1 6, 1–5 (2020).
https://​/​doi.org/​10.1038/​s41534-020-00287-w

[38] W. Wang, ZJ Chen, X. Liu, W. Cai, Y. Ma, X. Mu, X. Pan, Z. Hua, L. Hu, Y. Xu, H. Wang, YP Song, XB Zou, CL Zou og L. Sun, "Quantum-enhanced radiometry via approximate quantum error correction" Nature Communications 2022 13:1 13, 1-8 (2022).
https:/​/​doi.org/​10.1038/​s41467-022-30410-8

[39] W. Wang, Y. Wu, Y. Ma, W. Cai, L. Hu, X. Mu, Y. Xu, Zi Jie Chen, H. Wang, YP Song, H. Yuan, CL Zou, LM Duan og L. Sun, "Heisenberg-begrænset enkelt-mode kvantemetrologi i et superledende kredsløb" Nature Communications 10 (2019).
https:/​/​doi.org/​10.1038/​s41467-019-12290-7

[40] Kimin Park, Changhun Oh, Radim Filip og Petr Marek, "Optimal Estimation of Conjugate Shifts in Position and Momentum by Classically Correlated Probes and Measurements" Phys. Rev. Appl. 18, 014060 (2022).
https://​/​doi.org/​10.1103/​PhysRevApplied.18.014060

[41] Meixiu Li, Tao Chen, J. Justin Gooding og Jingquan Liu, "Review of carbon and graphene quantum dots for sensing" ACS Sensors 4, 1732-1748 (2019).
https://​/​doi.org/​10.1021/​acssensors.9b00514

[42] Romana Schirhagl, Kevin Chang, Michael Loretz og Christian L. Degen, "Nitrogen-vacancy centre in diamond: Nanoscale sensors for physics and biology" Annual Review of Physical Chemistry 65, 83-105 (2014).
https://​/​doi.org/​10.1146/​annurev-physchem-040513-103659

[43] D. Kienzler, C. Flühmann, V. Negnevitsky, H.-Y. Lo, M. Marinelli, D. Nadlinger og JP Home, "Observation af kvanteinterferens mellem adskilte mekaniske oscillatorbølgepakker" Phys. Rev. Lett. 116, 140402 (2016).
https://​/​doi.org/​10.1103/​PhysRevLett.116.140402

[44] Colin D. Bruzewicz, John Chiaverini, Robert McConnell og Jeremy M. Sage, "Trapped-ion quantum computing: Progress and challenges" Applied Physics Reviews 6 (2019) 021314.
https://​/​doi.org/​10.1063/​1.5088164

[45] C. Flühmann, TL Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta og JP Home, "Encoding a qubit in a catchd-ion mechanical oscillator" Nature 2019 566:7745 566, 513-517 (2019).
https:/​/​doi.org/​10.1038/​s41586-019-0960-6

[46] G Wendin "Quantum information processing with superconducting circuits: a review" Reports on Progress in Physics 80, 106001 (2017).
https:/​/​doi.org/​10.1088/​1361-6633/​aa7e1a

[47] Xiu Gu, Anton Frisk Kockum, Adam Miranowicz, Yu xi Liu og Franco Nori, "Mikrobølgefotonik med superledende kvantekredsløb" Fysikrapporter 718-719, 1-102 (2017) Mikrobølgefotonik med superledende kvantekredsløb.
https://​/​doi.org/​10.1016/​j.physrep.2017.10.002

[48] S. Touzard, A. Kou, NE Frattini, VV Sivak, S. Puri, A. Grimm, L. Frunzio, S. Shankar og MH Devoret, "Gated Conditional Displacement Readout of Superconducting Qubits" Physical Review Letters 122, 080502 ( 2019).
https://​/​doi.org/​10.1103/​PhysRevLett.122.080502

[49] Alexandre Blais, Steven M. Girvin og William D. Oliver, "Quantum information processing and quantum optics with circuit quantum electrodynamics" Nature Physics 16, 247-256 (2020).
https://​/​doi.org/​10.1038/​s41567-020-0806-z

[50] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-Geller, NE Frattini, VV Sivak, P. Reinhold, S. Puri, S. Shankar, RJ Schoelkopf, L. Frunzio, M. Mirrahimi og MH Devoret, "Kvantefejlkorrektion af en qubit kodet i gittertilstande af en oscillator" Nature 2020 584:7821 584, 368-372 (2020).
https:/​/​doi.org/​10.1038/​s41586-020-2603-3

[51] AA Clerk, KW Lehnert, P. Bertet, JR Petta og Y. Nakamura, "Hybride kvantesystemer med kredsløbskvanteelektrodynamik" Nature Physics 2020 16:3 16, 257-267 (2020).
https:/​/​doi.org/​10.1038/​s41567-020-0797-9

[52] Sangil Kwon, Akiyoshi Tomonaga, Gopika Lakshmi Bhai, Simon J. Devitt og Jaw Shen Tsai, "Gate-based superconducting quantum computing" Journal of Applied Physics 129 (2021).
https://​/​doi.org/​10.1063/​5.0029735

[53] Alexandre Blais, Arne L Grimsmo, SM Girvin og Andreas Wallraff, "Circuit quantum electrodynamics" Reviews of Modern Physics 93 (2021).
https://​/​doi.org/​10.1103/​RevModPhys.93.025005

[54] SC Burd, R Srinivas, JJ Bollinger, AC Wilson, DJ Wineland, D Leibfried, DH Slichter og DTC Allcock, "Quantum amplification of mechanical oscillator motion" Science 364, 1163-1165 (2019).
https://​doi.org/​10.1126/​science.aaw2884

[55] Norman F. Ramsey "A new molecular beam resonance method" Physical Review 76, 996 (1949).
https://​/​doi.org/​10.1103/​PhysRev.76.996

[56] F. Riehle, Th Kisters, A. Witte, J. Helmcke og Ch J. Bordé, "Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer" Physical Review Letters 67, 177-180 (1991) .
https://​/​doi.org/​10.1103/​PhysRevLett.67.177

[57] Malo Cadoret, Estefania De Mirandes, Pierre Cladé, Saïda Guellati-Khélifa, Catherine Schwob, François Nez, Lucile Julien og François Biraben, "Kombination af blochoscillationer med et Ramsey-Bordé interferometer: Ny bestemmelse af finstrukturkonstanten" Fysisk gennemgang Breve 101 (2008).
https://​/​doi.org/​10.1103/​PhysRevLett.101.230801

[58] A. Arias, G. Lochead, TM Wintermantel, S. Helmrich og S. Whitlock, "Realization of a Rydberg-dressed Ramsey Interferometer and Electrometer" Phys. Rev. Lett. 122, 053601 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.122.053601

[59] D. Leibfried, MD Barrett, T. Schaetz, J. Britton, J. Chiaverini, WM Itano, JD Jost, C. Langer og DJ Wineland, "Toward Heisenberg-limited spectroscopy with multiparticle entangled states" Science 304, 1476-1478 (2004).
https://​doi.org/​10.1126/​science.1097576

[60] M. Brownnutt, M. Kumph, P. Rabl og R. Blatt, "Ion-fældemålinger af elektrisk feltstøj nær overflader" Anmeldelser af Modern Physics 87, 1419 (2015).
https://​/​doi.org/​10.1103/​RevModPhys.87.1419

[61] Jacob Hastrup, Kimin Park, Jonatan Bohr Brask, Radim Filip og Ulrik Lund Andersen, "Målefri forberedelse af nettilstande" npj Kvanteinformation 2021 7:1 7, 1–8 (2021).
https:/​/​doi.org/​10.1038/​s41534-020-00353-3

[62] Jacob Hastrup, Kimin Park, Radim Filip og Ulrik Lund Andersen, "Ubetinget forberedelse af presset vakuum fra Rabi-interaktioner" Fysisk. Rev. Lett. 126, 153602 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.126.153602

[63] Kimin Park, Petr Marek og Radim Filip, "Deterministiske ikke-lineære faseporte induceret af en enkelt qubit" New Journal of Physics 20, 053022 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​AABB86

[64] Kimin Park, Jacob Hastrup, Jonas Schou Neergaard-Nielsen, Jonatan Bohr Brask, Radim Filip og Ulrik L. Andersen, “Slowing quantum decoherence of oscillators by hybrid processing” npj Quantum Information 2022 8:1 8, 1–8 (2022) .
https:/​/​doi.org/​10.1038/​s41534-022-00577-5

[65] Jacob Hastrup, Kimin Park, Jonatan Bohr Brask, Radim Filip og Ulrik Lund Andersen, "Universal Unitary Transfer of Continuous-Variable Quantum States into a Few Qubits" Physical Review Letters 128, 110503 (2022).
https://​/​doi.org/​10.1103/​PhysRevLett.128.110503

[66] Myung-Joong Hwang, Ricardo Puebla og Martin B. Plenio, "Quantum Phase Transition and Universal Dynamics in the Rabi Model" Phys. Rev. Lett. 115, 180404 (2015).
https://​/​doi.org/​10.1103/​PhysRevLett.115.180404

[67] MLL Cai, ZDD Liu, WDD Zhao, YKK Wu, QXX Mei, Y. Jiang, L. He, X. Zhang, ZCC Zhou og LMM Duan, "Observation af en kvantefaseovergang i kvante-Rabi-modellen med en enkelt fanget ion” Nature Communications 12, 1126 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-21425-8

[68] C. Hempel, BP Lanyon, P. Jurcevic, R. Gerritsma, R. Blatt og CF Roos, "Entanglement-enhanced detection of single-photon scattering events" Nature Photonics 7, 630-633 (2013).
https://​/​doi.org/​10.1038/​nphoton.2013.172

[69] Kevin A. Gilmore, Matthew Affolter, Robert J. Lewis-Swan, Diego Barberena, Elena Jordan, Ana Maria Rey og John J. Bollinger, "Kvanteforbedret sansning af forskydninger og elektriske felter med todimensionelle fangede ionkrystaller" Science 373, 673-678 (2021).
https://​doi.org/​10.1126/​science.abi5226

[70] S. Martínez-Garaot, A. Rodriguez-Prieto og JG Muga, "Interferometer med en drevet fanget ion" Fysisk gennemgang A 98 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.98.043622

[71] Katherine C. McCormick, Jonas Keller, David J. Wineland, Andrew C. Wilson og Dietrich Leibfried, "Coherently displaced oscillator quantum states of a single fanget atom" Quantum Science and Technology 4 (2018).
https://​/​doi.org/​10.1088/​2058-9565/​ab0513

[72] Louis Garbe, Matteo Bina, Arne Keller, Matteo GA Paris og Simone Felicetti, "Critical Quantum Metrology with a Finite-Component Quantum Phase Transition" Physical Review Letters 124, 120504 (2020).
https://​/​doi.org/​10.1103/​PhysRevLett.124.120504

[73] R. Di Candia, F. Minganti, KV Petrovnin, GS Paraoanu og S. Felicetti, "Kritisk parametrisk kvantesansning" npj Quantum Information 2023 9:1 9, 1–9 (2023).
https://​/​doi.org/​10.1038/​s41534-023-00690-z

[74] Yaoming Chu, Shaoliang Zhang, Baiyi Yu og Jianming Cai, "Dynamic Framework for Criticality-Enhanced Quantum Sensing" Physical Review Letters 126, 10502 (2021).
https://​/​doi.org/​10.1103/​PhysRevLett.126.010502

[75] Peter A. Ivanov "Forbedret to-parameter fase-rum-forskydning estimering tæt på en dissipativ faseovergang" Fysisk. Rev. A 102, 052611 (2020).
https://​/​doi.org/​10.1103/​PhysRevA.102.052611

[76] Anton Frisk Kockum, Adam Miranowicz, Simone De Liberato, Salvatore Savasta og Franco Nori, "Ultrastærk kobling mellem lys og stof" Nature Reviews Physics 2019 1:1 1, 19–40 (2019).
https:/​/​doi.org/​10.1038/​s42254-018-0006-2

[77] P. Forn-Díaz, L. Lamata, E. Rico, J. Kono og E. Solano, "Ultrastærke koblingsregimer for lys-stof-interaktion" Rev. Mod. Phys. 91, 025005 (2019).
https://​/​doi.org/​10.1103/​RevModPhys.91.025005

[78] Peter A. Ivanov, Kilian Singer, Nikolay V. Vitanov og Diego Porras, "Kvantesensorer assisteret af spontan symmetribrud til at detektere meget små kræfter" Fysisk. Rev. Appl. 4, 054007 (2015).
https://​/​doi.org/​10.1103/​PhysRevApplied.4.054007

[79] Peter A. Ivanov, Nikolay V. Vitanov og Kilian Singer, "Højpræcisionskraftføling ved hjælp af en enkelt fanget ion" Scientific Reports 6, 1-8 (2016).
https://​/​doi.org/​10.1038/​srep28078

[80] Peter A. Ivanovand Nikolay V. Vitanov "Kvanteføling af fase-rum-forskydningsparametrene ved hjælp af en enkelt fanget ion" Fysisk. Rev. A 97, 032308 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.97.032308

[81] D. Leibfried, R. Blatt, C. Monroe og D. Wineland, "Quantum dynamics of single fangede ioner" Rev. Mod. Phys. 75, 281-324 (2003).
https://​/​doi.org/​10.1103/​RevModPhys.75.281

[82] Michael J Biercuk, Hermann Uys, Joe W Britton, Aaron P Vandevender og John J Bollinger, "Ultrasensitiv detektion af kraft og forskydning ved hjælp af fangede ioner" Nature Nanotechnology 5, 646-650 (2010).
https://​/​doi.org/​10.1038/​nnano.2010.165

[83] KA Gilmore, JG Bohnet, BC Sawyer, JW Britton og JJ Bollinger, "Amplitudeføling under nulpunktsfluktuationerne med en todimensionel fanget-ion mekanisk oscillator" Physical Review Letters 118, 1-5 (2017).
https://​/​doi.org/​10.1103/​PhysRevLett.118.263602

[84] M. Affolter, KA Gilmore, JE Jordan og JJ Bollinger, "Fasekohærent sansning af massecentrets bevægelse af fangede ionkrystaller" Physical Review A 102, 052609 (2020).
https://​/​doi.org/​10.1103/​PhysRevA.102.052609

[85] Helmut Ritsch, Peter Domokos, Ferdinand Brennecke og Tilman Esslinger, "Kolde atomer i hulrumsgenererede dynamiske optiske potentialer" Rev. Mod. Phys. 85, 553-601 (2013).
https://​/​doi.org/​10.1103/​RevModPhys.85.553

[86] Ze-Liang Xiang, Sahel Ashhab, JQ You og Franco Nori, "Hybride kvantekredsløb: Superledende kredsløb, der interagerer med andre kvantesystemer" Rev. Mod. Phys. 85, 623-653 (2013).
https://​/​doi.org/​10.1103/​RevModPhys.85.623

[87] Shlomi Kotler, Raymond W. Simmonds, Dietrich Leibfried og David J. Wineland, "Hybride kvantesystemer med fangede ladede partikler" Phys. Rev. A 95, 022327 (2017).
https://​/​doi.org/​10.1103/​PhysRevA.95.022327

[88] C. Monroe, WC Campbell, L.-M. Duan, Z.-X. Gong, AV Gorshkov, PW Hess, R. Islam, K. Kim, NM Linke, G. Pagano, P. Richerme, C. Senko og NY Yao, "Programmerbare kvantesimuleringer af spinsystemer med fangede ioner" Rev. Mod. Phys. 93, 025001 (2021).
https://​/​doi.org/​10.1103/​RevModPhys.93.025001

[89] Gershon Kurizki, Patrice Bertet, Yuimaru Kubo, Klaus Mølmer, David Petrosyan, Peter Rabl og Jörg Schmiedmayer, "Quantum technologys with hybrid systems" Proceedings of the National Academy of Sciences 112, 3866-3873 (2015).
https://​/​doi.org/​10.1073/​pnas.1419326112

[90] Bruce W. Shore og Peter L. Knight "The Jaynes-Cummings Model" Journal of Modern Optics 40, 1195-1238 (1993).
https://​/​doi.org/​10.1080/​09500349314551321

[91] JM Fink, M. Göpl, M. Baur, R. Bianchetti, PJ Leek, A. Blais og A. Wallraff, "Climbing the Jaynes-Cummings ladder and observing its $sqrt{n}$ nonlinearity in a cavity QED system" Nature 454, 315-318 (2008).
https://​/​doi.org/​10.1038/​nature07112

[92] Philipp Schindler, Daniel Nigg, Thomas Monz, Julio T. Barreiro, Esteban Martinez, Shannon X. Wang, Stephan Quint, Matthias F. Brandl, Volckmar Nebendahl, Christian F. Roos, Michael Chwalla, Markus Hennrich og Rainer Blatt, “A kvanteinformationsprocessor med fangede ioner" New Journal of Physics 15, 123012 (2013).
https:/​/​doi.org/​10.1088/​1367-2630/​15/​12/​123012

[93] J. Casanova, G. Romero, I. Lizuain, JJ García-Ripoll og E. Solano, "Dybt stærk koblingsregime for Jaynes-Cummings-modellen" Physical Review Letters 105 (2010).
https://​/​doi.org/​10.1103/​PhysRevLett.105.263603

[94] TP Spiller, Kae Nemoto, Samuel L. Braunstein, WJ Munro, P. Van Loock og GJ Milburn, "Quantum computation by communication" New Journal of Physics 8, 30 (2006).
https:/​/​doi.org/​10.1088/​1367-2630/​8/​2/​030

[95] Kimin Park, Julien Laurat og Radim Filip, "Hybrid Rabi-interaktioner med rejsende lystilstande" New Journal of Physics 22, 013056 (2020).
https://​/​doi.org/​10.1088/​1367-2630/​AB6877

[96] Bastian Hacker, Stephan Welte, Severin Daiss, Armin Shaukat, Stephan Ritter, Lin Li og Gerhard Rempe, "Deterministisk skabelse af sammenfiltrede atomer - lys Schrödinger-kattestater" Nature Photonics 13, 110-115 (2019).
https:/​/​doi.org/​10.1038/​s41566-018-0339-5

[97] Zhang-qi Yin, Tongcang Li, Xiang Zhang og LM Duan, "Store kvantesuperpositioner af en leviteret nanodiamant gennem spin-optomekanisk kobling" Phys. Rev. A 88, 033614 (2013).
https://​/​doi.org/​10.1103/​PhysRevA.88.033614

[98] Wojciech Gorecki, Rafal Demkowicz-Dobrzanski, Howard M. Wiseman og Dominic W. Berry, "$pi$-Corrected Heisenberg Limit" Physical Review Letters 124 (2019).
https://​/​doi.org/​10.1103/​PhysRevLett.124.030501

[99] WH Zurek "Sub-Planck struktur i faserum og dens relevans for kvantedekohærens" Nature 2001 412:6848 412, 712-717 (2001).
https://​/​doi.org/​10.1038/​35089017

[100] WJ Munro, K. Nemoto, GJ Milburn og SL Braunstein, "Svag kraftdetektion med overlejrede sammenhængende tilstande" Phys. Rev. A 66, 023819 (2002).
https://​/​doi.org/​10.1103/​PhysRevA.66.023819

[101] Francesco Albarelli, Marco G. Genoni, Matteo GA A Paris og Alessandro Ferraro, "Ressourceteori om kvante-non-Gaussianitet og Wigner-negativitet" Fysisk gennemgang A 98, 52350 (2018).
https://​/​doi.org/​10.1103/​PhysRevA.98.052350

[102] WH Zurek "Sub-Planck struktur i faserum og dens relevans for kvantedekohærens" Nature 2001 412:6848 412, 712-717 (2001).
https://​/​doi.org/​10.1038/​35089017

[103] C. Bonato, MS Blok, HT Dinani, DW Berry, ML Markham, DJ Twitchen og R. Hanson, "Optimeret kvanteregistrering med et enkelt elektronspin ved hjælp af adaptive målinger i realtid" Nature Nanotechnology 11, 247-252 (2016) .
https://​/​doi.org/​10.1038/​nnano.2015.261

[104] ED Herbschleb, H. Kato, T. Makino, S. Yamasaki og N. Mizuochi, "Kvantemåling med ultrahøjt dynamisk område bevarer sin følsomhed" Nature Communications 2021 12:1 12, 1-8 (2021).
https://​/​doi.org/​10.1038/​s41467-020-20561-x

[105] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang, Simon Gustavsson og William D. Oliver, "Superconducting Qubits: Current State of Play" Annual Review of Condensed Matter Physics 11, 369-395 (2020).
https://​/​doi.org/​10.1146/​annurev-conmatphys-031119-050605

[106] CJ Ballance, TP Harty, NM Linke, MA Sepiol og DM Lucas, "High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits" Physical Review Letters 117 (2016).
https://​/​doi.org/​10.1103/​PhysRevLett.117.060504

[107] Stephen M. Barnett og Paul M. Radmore "Methods in Theoretical Quantum Optics" Oxford University Press (2002).
https://​/​doi.org/​10.1093/​acprof:oso/​9780198563617.001.0001

[108] M. Penasa, S. Gerlich, T. Rybarczyk, V. Métillon, M. Brune, JM Raimond, S. Haroche, L. Davidovich og I. Dotsenko, "Måling af en mikrobølgefeltamplitude ud over standardkvantegrænsen" Fysisk Anmeldelse A 94, 1–7 (2016).
https://​/​doi.org/​10.1103/​PhysRevA.94.022313

[109] M Aspelmeyer, TJ Kippenberg og F Marquardt, "Cavity optomechanics" anmeldelser af moderne fysik (2014).
https://​/​doi.org/​10.1103/​RevModPhys.86.1391

[110] JD Teufel, Dale Li, MS Allman, K. Cicak, AJ Sirois, JD Whittaker og RW Simmonds, "Circuit cavity electromechanics in the strong-coupling regime" Nature 2011 471:7337 471, 204-208 (2011).
https://​/​doi.org/​10.1038/​nature09898

[111] AS Holevo "Quantum systems, channels, information" degruyter.com (2019).
https://​/​doi.org/​10.1515/​9783110642490

[112] Matteo GA Paris "Quantum estimation for quantum technology" International Journal of Quantum Information 7, 125-137 (2009).
https://​/​doi.org/​10.1142/​S0219749909004839

[113] Jing Liu, Jie Chen, Xiao Xing Jing og Xiaoguang Wang, "Quantum Fisher information and symmetrisk logaritmic derivative via anti-commutators" Journal of Physics A: Mathematical and Theoretical 49 (2016).
https:/​/​doi.org/​10.1088/​1751-8113/​49/​27/​275302

[114] Lukas J. Fiderer, Tommaso Tufarelli, Samanta Piano og Gerardo Adesso, "General Expressions for Quantum Fisher Information Matrix with Applications to Discrete Quantum Imaging" PRX Quantum 2, 020308 (2021).
https://​/​doi.org/​10.1103/​PRXQUANTUM.2.020308

[115] Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman og Eric-Jan Wagenmakers, "A Tutorial on Fisher information" Journal of Mathematical Psychology 80, 40-55 (2017).
https://​/​doi.org/​10.1016/​j.jmp.2017.05.006

[116] P. van Loock, WJ Munro, Kae Nemoto, TP Spiller, TD Ladd, Samuel L. Braunstein og GJ Milburn, "Hybrid quantum computation in quantum optics" Phys. Rev. A 78, 022303 (2008).
https://​/​doi.org/​10.1103/​PhysRevA.78.022303

Citeret af

Kunne ikke hente Crossref citeret af data under sidste forsøg 2023-06-01 02:10:46: Kunne ikke hente citerede data for 10.22331/q-2023-05-31-1024 fra Crossref. Dette er normalt, hvis DOI blev registreret for nylig. På SAO/NASA ADS ingen data om at citere værker blev fundet (sidste forsøg 2023-06-01 02:10:46).

Tidsstempel:

Mere fra Quantum Journal