Bladinspirerede nanogeneratorer bruger regn og vind til at generere grøn elektricitet på en bæredygtig måde

Bladinspirerede nanogeneratorer bruger regn og vind til at generere grøn elektricitet på en bæredygtig måde

Kildeknude: 3067396
Jan 17, 2024

(Nanowerk nyheder) Forskere har udviklet en innovativ ny enhed, der kan udnytte energi fra regndråber og vind og omdanne den til brugbar elektricitet til at drive elektronik. Denne teknologi, beskrevet i et papir offentliggjort i ACS Sustainable Chemistry & Engineering (“Multisource Energy Harvester on Textile and Plants for Clean Energy Generation from Wind and Rainwater Droplets”), tilbyder en bæredygtig måde at generere strøm fra vedvarende omgivende kilder. Det kunne hjælpe med at aktivere selvdrevne netværk af sensorer, datatransmittere og andre elektroniske komponenter, der er nødvendige for Tingenes internet (IoT). Forskere udforsker forskellige tilgange til at høste omgivende energi fra sollys, vibrationer, varmeforskelle og andre kilder. De fleste har dog fokuseret på enkelte energityper, som ikke er kontinuerligt tilgængelige. Den nye undersøgelse demonstrerer et integreret system, der kombinerer en regndråbeenergihøster med en vindenergihøster for mere pålidelig elproduktion. "Vi har et presserende behov for distribuerede, rene og bæredygtige energiløsninger til at drive de sensornetværk, der er nødvendige for smart infrastruktur og miljøovervågning," sagde lederforsker Ravinder Dahiya fra Northeastern University. "De bladinspirerede enheder, vi har udviklet, kan effektivt udnytte energien i vind og regndråber til at generere brugbar elektricitet overalt. Med yderligere udvikling kan kunstige træer, der anvender denne teknologi, anvendes til passivt at producere vedvarende energi." Det nye system bruger en specialiseret nanogenerator med et lag designet til at fange energien fra faldende regndråber og et andet til at udnytte vindkraft. Begge lag er konstrueret af bæredygtige tekstilmaterialer behandlet med avancerede nanocoatings for at forbedre elektriske output. Skematisk billede af kunstig bladformet multisource energigenerator Schematic image of artificial leaf-shaped multisource energy generator. (© ACS) The droplet energy harvesting functionality works via a mechanism called the triboelectric effect combined with a self-restoring hydrophobic surface coating. Essentially, the kinetic energy of falling droplets causes positive and negative charges to form on separate electrodes. The water-repelling coating makes the droplets spread out and contract cyclically on impact, shuttling electrons back and forth to generate current. The wind harvesting layer operates by a similar principle, but charges are generated by contact electrification between two textile layers as air currents cause them to repeatedly touch and separate. Integrating the two nanogenerators allows the device to passively produce electricity from whatever ambient mechanical energy is available at a given time. In testing, the hybrid textile nanogenerators produced voltage spikes over 100V from simulated raindrops, along with sustained outputs over 10V from light winds. This was enough power to light up arrays of LEDs and charge energy storage capacitors. The researchers also developed an analytical model to optimize design parameters such as droplet size, impact velocity, contact pressure and surface textures. “The presented leaf-shaped harvesters effectively integrate triboelectric and droplet-based electricity generation mechanisms to scavenge multiple ambient energies,” stated Dr. Dahiya. “Both the modeled and measured outputs indicate they could reliably power sensors, data transmission circuits and other electronics needing up to tens of microwatts.” Significantly, all active materials are sustainable, biodegradable textiles and nanostructured coatings. In contrast with lithium batteries, there are no toxic components to dispose of. This makes the technology especially promising for distributed generator networks in environments where maintaining infrastructure is difficult. The authors envision enhancements such as hydrophobicity-optimized “power leaves” that could be incorporated into artificial plants and deployed anywhere for continuous passive generation of useful electricity. Arrays of such plants could for instance provide trickle charging to keep battery-powered IoT devices perpetually operational.
More broadly, this study demonstrates how applied nanoscience can create self-powered systems that solve pressing problems. It shows that materials and devices can do far more than passively behave—they can actively transform ambient energy into precisely what is needed, all without external power. Such technologies point the way toward smarter, more adaptive and more sustainable infrastructure for meeting future challenges.

Tidsstempel:

Mere fra Nanoværk